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Abstract. The trained person re-identification systems fundamentally
need to be deployed on different target environments. Learning the cross-
domain model has great potential for the scalability of real-world appli-
cations. In this paper, we propose a deep credible metric learning (DCM-
L) method for unsupervised domain adaptation person re-identification.
Unlike existing methods that directly finetune the model in the target do-
main with pseudo labels generated by the source pre-trained model, our
DCML method adaptively mines credible samples for training to avoid
the misleading from noise labels. Specifically, we design two credibility
metrics for sample mining including the k-Nearest Neighbor similarity
for density evaluation and the prototype similarity for centrality evalu-
ation. As the increasing of the pseudo label credibility, we progressively
adjust the sampling strategy in the training process. In addition, we
propose an instance margin spreading loss to further increase instance-
wise discrimination. Experimental results demonstrate that our DCML
method explores credible and valuable training data and improves the
performance of unsupervised domain adaptation.

Keywords: Credible learning, Metric learning, Unsupervised domain
adaptation, Person re-identification

1 Introduction

Person re-identification (ReID) aims at identifying a query individual from a
large set of candidates under the non-overlapping camera views. As an essential
role in various applications of security and surveillance, lots of attempts and
dramatic improvements have been witnessed in recent years [22,23,37,48,58].

Despite the satisfactory performance obtained by the supervised deep learn-
ing model and some label annotations in the single domain, it is still a challenge
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Fig. 1. Difference between our DCML method and conventional methods. The left part
shows that conventional metric learning methods treat all samples equally to train the
model and thus are easy to be misled by the noise labels. The right part shows that
our method adaptively mines credible samples to train the model, which can avoid the
damage from these low-quality samples. Best viewed in color.

to deploy the trained person ReID models on different target environments. It is
due to the domain bias between the training and deploying environments, e.g.,
the model trained on one university dataset need to be applied for airport or un-
derground station. One of the common methods is finetuning the deep model by
the image data of the target domain and pseudo labels generated by the source
pre-trained model (e.g., clustering [12, 34, 52], reference comparison [51], or n-
earest neighborhood [61] ). However, the predicted pseudo labels might involve
much noise, which misleads the training process in the target domain. As shown
in Fig. 1, the noisy labels might generate opposite gradients which undermine
the model discrimination.

To address this problem, we propose a deep credible metric learning (DCML)
method to avoid the damage from noise pseudo labels by adaptively exploring
credible and valuable training samples. Specifically, our DCML method consists
of two parts, including adaptively credible anchor sample mining and instance
margin spreading. The former is proposed to explore credible samples, which
are effective for learning the intra-class compact embeddings. We propose two
credibility metrics including the k-Nearest Neighbor similarity and the prototype
similarity. We implement two different similarity metrics to demonstrate the
generality of the credible anchor sample mining strategy. The k-Nearest Neighbor
similarity measures the neighborhood density of the sample by calculating the
maximum distance (minimum similarity) between itself and k nearest neighbors.
While the prototype similarity calculates the similarity between the sample and
class prototype, which denotes the sample’s centrality. Using these credibility
metrics, we can select samples with higher credibility as anchors. As the training
iterations increasing, the credibility of pseudo labels continues to increase too.
We therefore, progressively reduce the limitation of anchor sample mining to
select more credible training samples. In addition, we propose an instance margin
spreading (IMS) loss to increase the instance-wise discrimination, due to the
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initial embeddings of target samples are always confusing and in-discriminative
without supervised training. We regard each sample as an independent individual
and learn a spreading embedding apace by pushing the samples away from each
other by a large margin. We summarize the contributions of this work as follows:

1) We propose a deep credible metric learning (DCML) method for unsuper-
vised domain adaptation person ReID, which adaptively and progressively
mines credible and valuable training samples to avoid the damage from the
noise of predicted pseudo labels.

2) We design an instance margin spreading method loss to encourage the instance-
wise discrimination by spreading the embeddings of samples with a large
margin.

3) We conduct extensive experiments to demonstrate the superiority of our
method, and achieve the state-of-the-art performance on several large scale
datasets including Market-1501 [57], DukeMTMC-reID [30], and CUHK03 [21].

2 Related Work

Supervised Deep Person ReID: Most existing person ReID methods obtain
excellent performance by the supervised deep learning model and a number of la-
bel annotations. Some methods are devoted to designing more effective networks
by part-based model [3,6,36,37,41] or attention model [1,2,11,22,31,47]. Other
methods focus on capture more prior knowledge or supervisory signals, includ-
ing body structure [18, 19, 53, 54], human pose [29, 35], attribute labels [39, 55],
and other loss functions [4,15,56]. Despite the recent progress in the supervised
manner, the deployment of trained models for different target environments is
still a challenge due to the large domain bias.

Unsupervised Domain Adaptation Person ReID: To address the above
problem, Some works [24, 49] study purely unsupervised learning to learn from
unlabelled data for Re-ID. However, the performance is limited without any la-
beled data. Furthermore, many works attempt to learn the unsupervised domain
adaptation person ReID model, which leverages the labeled source domain da-
ta and unlabeled target domain data. Many existing works [5, 7, 44] apply the
generative model (e.g., GAN) to transform the images of source domain into the
target domain as the training data, aiming to reduce the domain bias from data.
While other works finetune the deep model with the target domain data and
pseudo labels generated by the source pre-trained model. The clustering meth-
ods [12, 34, 52] and reference comparison [51] are widely used to generate the
supervisory signal from pre-trained models. Besides, some unsupervised domain
adaptation person ReID methods explore other human prior knowledge or aux-
iliary supervisory signals to improve the adaptation and generalization ability
from the source domain to the target domain. EANet [16] employs the human
parsing results to assist feature alignment. While TJ-AIDL attempts to learn
a joint attribute-identity space which improves the model generalization abili-
ty with transferred attribute knowledge. Our work is related to PAST, which
randomly selects the positive and negative samples from top k neighbors and
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k-2k neighbors respectively with all samples as the anchors and employs a cross-
entropy loss as the promoting stage. However, PAST applies the fixed sampling
strategy for all anchors in the whole training process which ignores the initial
low-quality and continuous improvement of pseudo labels. Our DCML method
adaptively selects credible anchors by measuring the credibility of each sample
and progressively adjusts the sampling strategy for the different stages of the
training process.

Deep Metric Learning: Deep metric learning aims to learn the discrimi-
native feature embedding space instead of the final classifier, which generalizes
better to the unseen environment [4]. Existing deep metric learning method-
s mainly focus on design effective loss functions or develop efficient sampling
strategies. The loss designing methods focus on utilizing higher order relation-
ships [26, 40, 42], global information [27, 33], or the margin maximum [8, 38, 50].
While sampling-based methods are devoted to mining the hard negative samples
for training efficiency improvement. For instance, TriNet [15] samples the most
negative samples in the batch for fast convergence. Harwood et al. [13] found the
negative samples from an increasing search space defined by the nearest neighbor
distance. However, these mining strategies tend to select the harder samples due
to the larger gradient from violating triplet relation defined by the annotations,
which is confused with the noise labels, especially for pseudo labels. To address
this issue, we adaptively and progressively select the credible anchor samples,
which is appropriate for the low-quality predicted pseudo labels.

3 Deep Credible Metric Learning

The goal of our deep credible metric learning method is adaptively and progres-
sively discovering the credible samples to reduce the damage from noise labels.
In this section, we will introduce our DCML method from two parts, including
adaptively credible sample mining and instance margin spreading.

3.1 Problem Formulation

For the unsupervised domain adaptation person ReID problem, we have a source
dataset S = {XS ,YS}, where XS denotes the image data and YS is the corre-
sponding labels. Besides, we have another dataset in the deployed environmen-
t without any annotations, which is called target dataset X T = {xti}N1 . The
cross-domain person ReID system aims to learn the robust and generalizable
representations in the target domain with the supervised source dataset and
unsupervised target one. A popular solution for the unsupervised domain adap-
tation person ReID problem is finetuning the pre-trained model in the target
domain with the predicted pseudo labels. Support we have predicted pseudo la-
bels ŶT = P(X T ;XS ,YS) generated by the pre-trained model from the source
domain, we learn feature embeddings with a convolutional neural network (CN-
N) Fθ as fi = Fθ(xti) with the objective function which is formulated as:

θ = arg min
θ
L(θ;X T , ŶT ), (1)
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Fig. 2. Illustration of the deep credible metric learning method. The DCML method
starts with learning a pre-trained CNN network with the source labeled data. In each
iteration, we extract the embeddings of unlabeled target images and generate pseudo
labels with the clustering method. To avoid the misleading of noise pseudo labels, we
adaptively mine credible samples as the anchor data and optimize the model with
these samples. The gradients come from two objective functions including the triplet
loss with red arrows and the IMS loss with purple arrows. In addition, we progressively
adjust the anchor sample mining strategy to select more anchor samples as iteration
increases. Best viewed in color

where the objective is to learn CNN Fθ by using pseudo labels as a superviso-
ry signal. However, the performance of this objective function entirely depends
on the properties of generated labels without a stable guarantee. The gener-
ated labels are always noisy due to the large domain bias between the source
and target datasets. These noise labels always mislead the training process by
providing wrong gradients. This inevitably leads to the necessity of adaptively
credible samples mining for more reliable model learning.

3.2 Adaptively Credible Sample Mining

The adaptively credible sample mining strategy aims to select the more credible
samples to avoid the damage from noise labels. For one target sample and corre-
sponding pseudo label (xti, ŷ

t
i), we define a credibility metric C(xti, ŷti) to evaluate

whether a label is credible enough as a supervisory signal. Given a threshold τ ,
we select the more credible samples as the training data:

X TC = {xti ∈ X T |C(xti, ŷti) > τ}, (2)

where X TC denotes selected credible dataset in which each sample is credible as
an anchor sample to train the model. In the following subsections, we will intro-
duce that the threshold τ is adaptive with the learning process, which reduces
the threshold when the pseudo labels are more credible. The main problem is
how to evaluate the credibility of samples. The basic assumption of our anchor
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sample mining strategy is that the central and dense samples are credible for
training. Thus we design two credibility metrics including the k-Nearest Neigh-
bor distance and the prototype distance to measure the neighborhood density
and class centrality of samples.

Prototype Similarity: In the prototype similarity, we define the credibility
of one sample with the similarity between it and the class prototype. Inspired
by the prototypical network [32], we assume all support data points of the same
“class” lie in a manifold, and calculate the class prototype as the center of class:

Pk =
1

|Mk|
∑

xt
i∈Mk

Fθ(xti), (3)

whereMk = {xti ∈ X T |ŷti = k} denotes the set of examples labeled with class k,
and ŷti is the pseudo label of xti. Then the intra-class centrality can be calculated
with the Euclidean distance as:

CP (xt, ŷt) = −||xt − Pŷt ||2. (4)

The larger CP (xt, ŷt) values correspond to more intra-class consistent samples.
When the intra-class centrality CP (xt) is large, the sample xt is close to the
class prototype, which means that its representation as a class is trustworthy.
On the contrary, the samples with small credibility values might be mislabeled
since these samples are always close to the uncredited classification-plane.

KNN Similarity: Different from prototype similarity measuring the intra-
class sample centrality, the KNN similarity calculates the local density by the
neighborhood information. For a sample xt, the neighborhood set N (xt) con-
sists of k samples whose distance is nearest with the xt. The neighborhood set
denotes the local neighborhood information of samples, which can be employed
to describe the density. We define the KNN distance as

CN (xt) = − max
xt
i∈N (xt)

d(xt, xti), (5)

where d(·, ·) is a distance metric, e.g., the Euclidean distance. We employ the
minimal similarity among the k nearest neighborhoods to denote the local den-
sity. All the samples in the neighborhood set N (xt) are more compact as KNN
similarity CN (xt) is large, which denotes that the xt resides in a high-density
region. When the samples are dense in the neighborhood set and far away from
other samples, the neighborhood-based pseudo label generation method, e.g.,
clustering, will give a more reliable result. When the samples are dense and in-
distinguishable, they are also necessary to pay more attention. Thus, we select
the samples with higher KNN similarity as training data.

Progressively Learning: In the whole training stage, we iteratively gen-
erate the pseudo labels with the embedding model and train the embedding
model with pseudo labels. In each iteration, we first extract the embeddings
with current model Fθ and cluster on the embedding space to generate the
pseudo labels. Then, we apply the pseudo labels as supervisory signal to train
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and update the embedding model. Though this iterative learning process, the
pseudo labels become more and more credible and embeddings become more and
more discriminative. In our DCML method, we progressively adjust the anchor
sample mining strategy to select more anchor samples by reducing the selection
threshold as iteration increases, since the pseudo labels are more credible as the
model is finetuned. When the pseudo labels are credible enough, we tend to em-
ploy all the data in the target domain to train our model. Specifically, we design
a linear threshold adaptation strategy, which progressively reduce the threshold
τ with the iterations r. We formulate the threshold adaptation strategy with
iterations r as follows:

τ = arg min
τ
|X Tc | ≥ (γ0 + r ×∆γ)|X T | (6)

where |X Tc | and |X T | respectively denote the number of samples in the selected
and original datasets. γ0 and ∆γ are the hyperparameters of algorithm which
respectively denote the initial sampling rate of anchor samples and the increment
in each iteration. The basic goal of this strategy is adapting an appropriate
threshold τ to select sufficient credible anchor samples. The number of selected
samples progressively increases with the assuming that the credibility of pseudo
labels increase as training iterations.

3.3 Instance Margin Spreading

The pre-trained embeddings on the target domain are always confusing and in-
discriminative. It is difficult to cluster these in-discriminative samples and gener-
ate credible pseudo labels. In order to increase the inter-class discrimination, we
propose an instance margin spreading (IMS) loss which spreads the embeddings
by pushing the samples a large margin apart from each other for a discrimina-
tive embeddings space. Inspirited by the instance discrimination learning [46]
which assumes each instance is a independent class, we aim to learn a spreading
metric space where the distances between each instance pair are over a large
margin. Different from conventional margin-based losses (e.g., triplet loss), our
IMS loss doesn’t require any labels, which learns the embedding space only by
the instance-wise discrimination. The basic formulation of this margin constraint
is as follows:

Lims(xta) =
∑
i 6=a

max
(
0,m− da,i

)
(7)

where xa denotes the random selected sample, da,i denotes the distance between
the sample pair d(xta, x

t
i) and i 6= a represents all other samples in the dataset

except itself. The m is a margin which denotes the lower bound of distances
between each sample pair. As shown in [4] and [33], we can obtain the equivalent
loss function by replacing the max(0, x) with a continuous exponential function
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Algorithm 1 : DCML

Require: Source dataset S; target dataset T ; maximal iterative number Rmax.
Ensure: The parameters θ of embedding network Fθ.
1: Obtain the target-style dataset S ′ by a GAN;
2: Initialize θ by pre-training on the target-style source dataset S ′ ;
3: for r = 1, 2, . . . , Rmax do
4: Extract embedding features of training data by Fθ ;
5: Generate pseudo labels ŶT by clustering with extracted features;
6: Adjust sampling threshold τ with the number of iterations r as (6)
7: Mine credible sample set X T

C as (2)
8: Update Fθ with credible sample set X T

C and generated pseudo labels ŶT as (9)
9: end for

10: return θ

and a logarithmic function, which is formulated as:

Lims(xta) = log
(
1 +

∑
i6=a

em−da,i
)

= − log e−da,a

e−da,a+
∑
i6=a

em−da,i

= − log e−da,a∑N
i=1 e

ma−da,i
, (8)

where ma is an adaptive margin. For the same instance, ma is zero. For others,
ma is large. In this formulation, we assume that the distance between the sample
and itself is zero, i.e., da,a = 0. Different from other instance discrimination
learning methods (e.g., [46], [61]), we learn a spreading metric space with a large
margin. This metric space encourages an inter-class discrimination by the margin
constraint, which is beneficial for robust clustering and credible sample mining.

3.4 Objective Function

Given the anchor sample set X TC discovered by our adaptively credible sample
mining strategy, we train our embedding model Fθ with the objective function
combining the proposed instance margin spreading loss and conventional metric
learning loss:

L =
∑

xt
i∈XTC

Ltri(xti) + λLims(xti), (9)

where Ltri(xti) is the common metric learning loss: Triplet Loss [15], and λ
denotes the hyper-parameter that balance the importance of different objectives.
The triplet loss aims to learn an embedding space in which an anchor sample
is closer to its positive sample than other negative ones by a large margin. We
formulated it as follows:

Ltri(xti) = [||fi − f+i ||
2
2 − ||fi − f−i ||

2
2 +mtri

]
+
, (10)
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Table 1. The basic statictics of all datasets in experiments.

Datasets Identities Images Cameras Train IDS Test IDS Labeling

Market-1501 1501 32668 6 751 750 Hand/DPM
DukeMTMC-reID 1812 36411 8 702 1110 Hand
CUHK03 1467 14096 2 767 700 DPM

where [·]+ indicates the max function max(0, ·) which denotes that gradients will
disappear when the difference between the intra-class and inter-class distances
is large enough. fi, f

+
i , f

−
i respectively denote as features of the anchor, positive

and negative sample in a triplet. The positive and negative samples selection
strategy follows [15] that only uses the hardest positive and negative points in
the mini-batch. mtri is a margin to enhance the discriminative ability, which is
similar with ma in the instance margin spreading loss. For more clear explana-
tion, we provide the Algorithm 1 to introduce the learning process of our DCML
method in detail.

3.5 Discussion

Some methods (e.g., PUL [10], UDA [34], PAST [52], and SSG [12]) also apply
the clustering algorithm to generate pseudo labels of target domain. However, the
pseudo labels might involve much noise, which misleads the training process in
the target domain. To solve this problem, our DCML method develops a credible
sample mining strategy in the metric learning to avoid the noisy labels. PUL [10]
have proposed a reliable objective function to regulate the sparsity of samples,
and then simultaneously optimized the objective of the discriminative model
and the regulation term of the number of samples. However, this regulation
term may disturb the original discriminative learning since the valuable samples
in the optimization process tend to be removed. Different from PUL, our DCML
method proposes a credible sample mining strategy which is inspired by the hard
negative mining in the metric learning. The credible data sampling is separated
from the metric learning process, without the disturbance. As far as we know,
DCML is the first metric learning method to adaptively select credible samples,
which does not break the discriminative learning.

4 Experiment

In this section, we evaluated our DCML method on three large-scale person ReID
datasets: Market-1501 [57], DukeMTMC-reID [30], and CUHK03 [21]. Quantita-
tively, we compared our DCML method with other state-of-the-art unsupervised
domain adaptation person ReID approaches and conducted ablation studies to
analyze each component. Besides, we visualized the embedding space to quali-
tatively analyze our method.
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Table 2. Ablation studies show the influences of design choices on mAP and Rank-
1,5,10(%), with Market-1501 as the source dataset and DukeMTMC-reID as the target
dataset and vice versa. The † denotes that this method is reproduced by ourself with
the same backbone and hyperparameters.

Method
M → D D → M

mAP R1 R5 R10 mAP R1 R5 R10

UDA† 54.4 72.7 82.1 85.6 56.5 78.4 86.5 89.5
UDA† + GAN 60.4 76.3 85.8 88.4 70.5 85.8 93.2 95.1
UDA† + CAMS+ IMSLoss 60.2 75.9 84.0 86.7 69.2 85.4 92.8 94.8
UDA† + GAN + IMSLoss 62.2 76.9 85.9 88.8 71.3 86.9 92.9 95.1

DCML (KNN ) 63.3 79.1 87.2 89.4 72.6 87.9 95.0 96.7
DCML (Prototype ) 63.5 79.3 86.7 89.5 72.3 88.2 94.9 96.4

4.1 Datasets and Experimental Settings

Datasets: Our experiments are conducted on three large-scale datasets includ-
ing Market-1501 [57],DukeMTMC-reID [30], and CUHK03 [21]. Although all
the above datasets are collected from the natural real-world scene of the u-
niversity environment, there still is a large domain shift among them such as
background, illumination, and clothing style. For example, the persons in the
Market-1501 and DueMTMC-reID datasets mainly come from Asia and Ameri-
ca respectively. For all datasets, we share the same experiment settings with the
standard cross-domain person ReID experimental setups in the baseline method
UDA [34] and PAST [52]. Specifically, we follow the source/target selection strat-
egy, training/testing ID splitting strategy, and evaluation measuring protocols.
For Market-1501 and DukeMTMC-reID datasets, we evaluated our method in
the single query mode. While for the CUHK03 dataset, we only use the DPM
detected images and choose the new train/test evaluation protocol in [59] for a
fair comparison. The detailed information of the datasets are shown in Table 1.

Evaluation Protocol: In our experiments, we employed the standard met-
rics including cumulative matching characteristic (CMC) curve and the mean
average precision (mAP) score to evaluate the performance of the person reID
methods. We reported rank-1, rank-5 and rank-10 accuracy and mAP score in
our experiments. Note that post-processing methods, e.g., re-ranking [59], are
not applied for the final evaluation.

4.2 Implementation Details

Source Domain Pre-training: Leveraging the labeled source domain images,
we pre-train a CNN model in a supervised manner by following the training strat-
egy described in [2]. Specifically, we use the ImageNet pre-trained ResNet50 [14]
without any attention model as the backbone of our model for fairness. The
original stride = 2 convolution layer in the last block is replaced by a stride = 1
one to preserve the image resolution. For image preprocessing, we attempt to



Deep Credible Metric Learning 11

use the generative images by the SPGAN [7] and adopt the random horizontal
flipping, random cropping, and random erasing data augmentation methods for
image diversity. The supervisory signals in the source domain training consist
of label smooth cross-entropy loss and triplet loss. Besides, other hyperparam-
eters including image resolution, batch size, learning rate, weight decay factor,
learning rate decay strategy, and max epochs are the same as [2].

Pseudo Label Generation: We adopt the DBSCAN clustering method [9]
to generate pseudo labels, which is the same as the baseline UDA method [34].
The input of DBSCAN algorithm is the reranked distance matrix of the target
domain samples and the output is the clustering result. We give each image
cluster containing more than two samples a pseudo-label and then discard the
individual images.

DCML: In the process of target domain adaptation, we train our model for
8 iterations and 30 epochs are required in each iteration. For the credible sample
mining strategy, we set γ0 ≈ 0.75 and ∆γ ≈ 0.05 to update the sample selection
threshold. Taking the DukeMTMC-reID datasets as an example, we select 12000
anchor samples in the first iteration and increase 1000 samples each iteration.
For objective function, we respectively set the margins ma = 0.1 and mtri = 0.3
for instance margin spreading loss and triplet loss. The rate of loss weighting is
set as λ = 0.01. In each mini-batch, we randomly select 224 samples from the
credible sample set, in which each individual contains 16 images. We use Adam
optimizer with an initial learning rate of 0.0005 and the weight decay of 0.001.
The initial learning rate is reduced to 0.1 at 3th and 6th iterations, and in each
iteration, it is temporarily reduced in the last 10 epochs. We conducted All our
experiments on 4 Nvidia GTX 1080Ti GPUs with PyTorch 1.2.

4.3 Ablation Study

To analyze the effectiveness of individual components in our DCML approach,
we conducted comprehensive ablation experiments on the M→ D and D→ M
settings, where M → D denotes that the source dataset is Market-1051 and the
target dataset is DukeMTMC-reID. We reproduced the UDA [34] method with
the same backbone and hyperparameters of our method as the baseline, and
applied the proposed credible anchor mining strategy, instance margin spread-
ing loss, and the GAN based image style transfer on it. Table 2 We exhibited
the comparison results in different settings in Table 2 and analyzed different
components as follows.

Credible Anchor Mining Strategy: As shown in Table 2, CAMS denotes
our credible anchor mining strategy. Compared the performance under the set-
ting of UDA †+GAN + IMSLoss and the full DCML method, we can observe
the obvious decline when the CAMS is removed. It illustrates that progressively
and adaptively mining credible samples assists the target domain training by
discarding samples with noise labels. In addition, we compared the effectiveness
of different credibility similarity methods. The KNN similarity and prototype
similarity are comparable to evaluate the credibility, which indicates our sample
mining strategy is robust for different credibility evaluation methods.



12 Chen et al.

Table 3. Performance comparisons with SOTA unsupervised domain adaptation per-
son Re-ID methods from Market-1501 to DukeMTMC-reID and vice versa.

Method
M → D D → M

mAP R1 R5 R10 mAP R1 R5 R10

PTGAN [44] - 27.4 - 50.7 - 38.6 - 66.1
SPGAN [7] 22.3 41.1 56.6 63.0 22.8 51.5 70.1 76.8
SPGAN+LMP [7] 26.2 46.4 62.3 68.0 26.7 57.7 75.8 82.4
HHL [60] 27.2 46.9 61.0 66.7 31.4 62.2 78.8 84.0
DA2S [17] 30.8 53.5 - - 27.3 58.5 - -
CR-GAN [5] 48.6 68.9 80.2 84.7 54.0 77.7 89.7 92.7
TJ-AIDL [43] 23.0 44.3 59.6 65.0 26.5 58.2 74.8 81.1
TAUDL [20] 43.5 61.7 - - 41.2 63.7 - -
UCDA [28] 45.6 64.0 - - 49.6 73.7 - -
EANet [16] 48.0 78.0 - - 51.6 78 - -

PUL [10] 16.4 30.0 43.4 48.5 20.5 45.5 60.7 66.7
MAR [51]* 48.0 67.1 79.8 - 40.0 67.7 81.9
CASCL [45]* 37.8 59.3 73.2 77.8 35.5 65.4 80.6 86.2
ENC [61] 40.4 63.3 75.8 80.4 43.0 75.1 87.6 91.6
UDA [34] 49.0 68.4 80.1 83.5 53.7 75.8 89.5 93.2
PAST [52] 54.3 72.4 - - 54.6 78.4 - -
SSG++ [12] 60.3 76.0 85.8 89.3 68.7 86.2 94.6 96.5

DCML (KNN ) 63.3 79.1 87.2 89.4 72.6 87.9 95.0 96.7
DCML (Prototype ) 63.5 79.3 86.7 89.5 72.3 88.2 94.9 96.4

Table 4. Performance comparisons with other methods from CUHK03 to DukeMTMC-
reID and Market-1501.

Methods
C → D C → M

mAP Rank-1 mAP Rank-1

PUL [10] 12.0 23.0 18.0 41.9
PTGAN [44] - 17.6 - 31.5
HHL [60] 23.4 42.7 29.8 56.8
EANet [16] 26.4 45.0 40.6 66.4
PAST [52] 51.8 69.9 57.3 79.5

DCML(KNN) 56.9 73.7 58.0 78.7
DCML(Prototype) 54.6 72.2 59.5 78.7

Instance Margin Spreading Loss: The proposed IMS Loss aims to in-
crease inter-class discrimination by enlarging the margin between the instances.
We conducted the ablation studies about IMS Loss on the both “UDA” and
“UDA+GAN” baselines, and obtained consistent improvement. Besides, we ob-
served that the improvement on the stronger baseline (GAN+UDA) is lower
than the original UDA method. This might be due to the generative images
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with GAN have a lower domain shift than the original images. The embedding
space pre-trained with generative images is more spreading.

Image Style Transfer: In our final system, we employed the domain adap-
tation generative images with SPGAN [7] to pre-train the model on the source
domain. The generator transfers the style of source domain images to the target
domain style, which reduces the domain shift between source and target datasets.
With the generative images pre-train, the baseline UDA method achieves a large
improvement, which demonstrates that the quality of predicted pseudo labels is
important for target domain finetuning. It also motivates us to additionally en-
hance the quality of pseudo labels.

4.4 Comparison with State-of-the-art Methods

We compared our method with other SOTA unsupervised domain adaptation
person ReID methods on the Market-1501, DukeMTMC-ReID and CUHK03
datasets. Specifically, we conducted the experiments following evaluation set-
tings in [52] including M→ D, D→ M, C→ D, and C→ M tasks, where M, D,
C respectively denote Market-1501, DukeMTMC-ReID and CUHK03 datasets.
As shown in Table 3 and 4, the bottom groups summarize the performance of
methods generating pseudo superiority signal to train the model on the target
domain, while the top and middle groups respectively show these methods using
GAN or other auxiliary attributes. Our DCML achieved consistent improvement
over other comparing methods, which indicates the effectiveness of our credible
sample mining strategy and instance margin spreading loss.

M→ D and D→ M: As shown in Table 3, we compare our results with
7 methods finetuning meodel by pseudo superiority signal, 5 methods reducing
the domain shift with GAN and 4 methods using auxiliary clues. The * in the
tables denotes that the method whose source dataset is MSMT17 [44], which
is the largest re-ID dataset with large-scale images and multiple cameras. We
achieve the state-of-the-art results for both settings.

C→D and C→M: We also evaluated our DCML method using CUHK03 [21]
as the source dataset. The results of our DCML method and other state-of-the-
art methods are summarized in Table 4. Our DCML method improved PAST [52]
by adaptively and mining credible anchors and progressively adjusting the min-
ing strategy, which avoids the misleading from noise labels. Note that we don’t
use the complex part model like PCB [37] in our DCML method.

4.5 Qualitative Analysis

To validate the effectiveness of our DCML method, we qualitatively examined the
learned embeddings. As shown in Fig. 3, we visualize the Barnes-Hut t-SNE [25]
map of our learned embeddings of the gallery dataset in DukeMTMC-ReID. To
observe the details, we magnify several regions in the corners. Despite the large
intra-class variations such as illumination, backgrounds, viewpoints and human
poses, our DCML method still groups similar individuals on the target domain
in an unsupervised manner.
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Fig. 3. Barnes-Hut t-SNE visualization [25] of the proposed DCML method on the
gallery set of DukeMTMC-ReID, where we zoom in several areas for a clear view.

5 Conclusion

In this paper, we have proposed a deep credible metric learning method for un-
supervised domain adaptation person re-identification, which adaptively mines
credible samples to train the network and progressively adjusts the sample min-
ing strategy with the learning process. It is due to that the generated pseudo
labels are always unreliable and the noise will mislead the model training. We
present two similarity metrics for the goal of measuring the credibilities of pseudo
labels, including the k-Nearest Neighbor distance for density evaluation and the
prototype distance for centrality evaluation. With the training process, we pro-
gressively reduce the limitation to select more samples. In addition, we propose
an instance margin spreading loss to further increase the inter-class discrimina-
tion. We have conducted extensive experiments to demonstrate the effectiveness
of our DCML method. In the future, we will attempt to design a credible negative
mining strategy to further improve the cross-domain metric learning.
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