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Abstract. Video-based person re-identification aims to match pedes-
trians with the consecutive video sequences. While a rich line of work
focuses solely on extracting the motion features from pedestrian videos,
we show in this paper that the temporal coherence plays a more criti-
cal role. To distill the temporal coherence part of video representation
from frame representations, we propose a simple yet effective Adversarial
Feature Augmentation (AFA) method, which highlights the temporal co-
herence features by introducing adversarial augmented temporal motion
noise. Specifically, we disentangle the video representation into the tem-
poral coherence and motion parts and randomly change the scale of the
temporal motion features as the adversarial noise. The proposed AFA
method is a general lightweight component that can be readily incorpo-
rated into various methods with negligible cost. We conduct extensive
experiments on three challenging datasets including MARS, iLIDS-VID,
and DukeMTMC-VideoReID, and the experimental results verify our
argument and demonstrate the effectiveness of the proposed method.

Keywords: Video-based person re-identification, Temporal coherence,
Feature augmentation, Adversarial learning.

1 Introduction

Person re-identification (ReID) matches pedestrians in a non-overlapping cam-
era network, which has great potential in surveillance applications [25], such as
suspect tracking and missing elderly retrieval. Conventional image-based ReID
methods [2, 23, 48, 49] face many challenges, such as pose variations, illumina-
tion changes, partial occlusions and clutter background, due to the complicated
intra-class variances and the limited clues in the single image. To tackle these
challenges, many works [1, 3, 28, 29, 54] tend to use videos instead of a single
image to identify the persons.

? Equal contribution. The corresponding author is Jiwen Lu.
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Compared with image data, surveillance videos avoid complex pre-processing
and preserve more abundant identity clues from different view angles and pos-
es. To obtain these identity clues from pedestrian videos, many existing works
attempt to extract the temporal motion features, such as the gait of person. For
example, some works [1, 17, 18, 43, 45] extract the shallow motion features like
HOG3D [19] or learn the deep motion features from the optical flow [7]. Other
methods [26, 29, 54] further model the motion information with the recurrent
model like RNN or LSTM. Besides, Some works [21, 24] learn the motion clues
with 3D convolution neural network (3D-CNN). Different from them, in this
paper, we show that the temporal coherence is more critical than than tempo-
ral motion, which offers a new perspective on learning better representation for
video-based person ReID.

Many video ReID methods capturing the motion clues (e.g. RNN, 3D-CNN,
or optical flow based two-stream networks) are inspired by the video recognition
tasks. However, different from these video-based recognition tasks (e.g. video
classification, action recognition), the video ReID task focuses on the object
(person) itself, rather than the pure motion of object. It motivates us to capture
the invariant features about the person itself, but not the variant features over
time. In Fig. 1, we show a visual comparison between temporal coherence features
and optical flows about temporal motion. We can observe that temporal motion
features are more instable for different view angles, different actions and other
moving occlusions. For example, the optical flows of Tracklet 1 focus on the other
occlusion person, while the ones of Tracklet 2 focus on the motion of arm due
to the person’s action. As a contrast, the temporal coherence features capture
the clues that are invariant over time (the cloth of the person), which is more
related to the identity and more discriminative. We agree that videos contain
the temporal motion clues which are beneficial to person ReID, e.g. the gaits.
However, these temporal motion clues also bring intra-class noise like the change
of poses, especially for the aggregation stage. As proved in [45], the temporal
motion features are harder to be applied to distinguish the person videos, due
to the large intra-class variance and small inter-class variance. Thus, we argue
that the temporal coherence features are more appropriate for the video-based
person ReID task and give a proof-of-concept in this paper.

To distill the temporal coherence feature, we propose a simple yet effective
adversarial feature augmentation (AFA) method which generates the adversarial
augmented features with the temporal motion noise. In this paper, we use invari-
ant and variant features to represent temporal coherence and temporal motion
respectively. Specifically, we disentangle the video representation into the expec-
tation and variance of embeddings of different frames. In the training process,
we randomly vary the magnitude of the temporal motion features as an adver-
sarial interference to highlight the temporal coherence feature. On the one hand,
the various temporal motion noises break the discriminant of the video repre-
sentation. On the other hand, the video representation highlights the temporal
constance information and adversarially reduce the influence of motion noises.
In the testing process, we only use the temporal coherence feature for similar-
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Fig. 1. The visual comparison between temporal coherence features and optical flows
of temporal motion. For two tracklets from the same identity under different camera
views, the temporal motion optical flows may vary dramatically due to different actions
of one pedestrian, while the temporal coherence features are more discriminative since
they focus on the invariance of the video.

ity measuring. AFA is a general module that can be readily incorporated into
various video-based person ReID methods. It is lightweight and effective which
brings significant performance improvement with negligible computing cost. We
conduct experiments to verify our argument that the temporal coherence is more
critical than the motion clues for video-based person re-identification. The con-
sistent improvements on three challenging datasets including MARS, iLIDS-VID,
and DukeMTMC-VideoReID demonstrate the effectiveness of the proposed AFA
method. We summarize the contributions of this work as:

1) We show that the temporal coherence is more critical than the motion clues,
which offers a new perspective on learning better representation for video-
based person ReID.

2) Based on the observation, we propose a simple yet effective method (AFA)
to distill the temporal coherence features in an adversarial manner. The
proposed AFA model is a lightweight and efficient component that can be
readily incorporated into other methods.

3) We conduct extensive experiments to demonstrate the superiority of our
AFA method, and achieve the state-of-the-art performance on several large
scale video person ReID benchmarks.

2 Related Work

2.1 Video-based Person Re-identification

Video sequences provide abundant and diverse person samples, which indicate
more real sample distribution. For learning more robust representation from
these video sequences, existing video-based person ReID methods mainly take
great efforts to: 1) mine the motion clues in the person video; 2) aggregate
the video sequence embeddings. To extract discriminative motion clues, many
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early works [17, 18, 39, 45] directly employ the temporal motion features like
HOG3D [19] as the extra features. While some deep learning methods [1, 26,
29, 43] learn the motion features from the optical flow [7]. In addition, many
methods [26, 29, 44, 54] model the motion process with the recurrent model like
RNN or LSTM. Recently, 3D convolution neural network [21,24] (3D-CNN) has
been applied for video person ReID to jointly learn the appearance and motion
clues. Different from these methods which are mainly inspired by video (action)
recognition methods, we argue that the temporal coherence is more critical than
the motion clues for video-based person ReID, since the ReID focuses on the
maker of the motion but not the motion itself. Thus, we focus on learning the
robust temporal consecutive features of pedestrian videos rather than the tem-
poral motion ones.

The aggregation of embeddings of the video sequence is another popular
research field for video-based person ReID, which aims to obtain a discriminative
video embedding from a sequence of image embeddings. As the baseline methods,
[29, 54] apply a temporal pooling layer to average all embeddings of the video.
While some attention based methods [1, 3, 4, 22, 28, 43] select key frames of the
video to avoid the misleading from noisy frames. Besides, some works [30, 31]
sequentially discard confounding frames until the last one, which enlarges the
discrimination and reduce the computing cost for video matching. Despite these
recent progresses, the aggregation is still difficult due to the large intra-video
variance of different frames, especially when the temporal motion features are
highlighted. To solve this problem, we distill the temporal coherence feature and
reduce the variance of temporal embeddings in an adversarial manner.

2.2 Data Augmentation

Data augmentation is an explicit form of regularization to learn robustness rep-
resentation and prevent deep models from overfitting by generating extra data.
It gains great success in various fields, such as image classification [12, 36], ob-
ject detection [27,32] and video analysis [8,40]. The common data augmentation
strategies include flipping, cropping, rotation, color jittering, and adding noises.
While Zhang et al. [46] proposed to use the convex combinations of pairs as
the augmented data. Besides, many works [10, 52] apply the GAN to generate
the augmented images. Data augmentation have been also applied for person
ReID to learn robust representation. For example, Zhong et al. [53] selected a
rectangle region in an image and erases its pixels with random values. While
Huang et al. [16] adversarially occluded samples as the data augmentation. D-
ifferent from these methods which augments data, our proposed AFA method
distills the temporal coherence feature from video representation by adversari-
ally augmenting the features. Inspired by these adversarial data augmentation
methods, we disentangle the video representation into temporal coherence and
temporal motion parts and generate the adversarial augmented features with
the variable temporal motion features.
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Fig. 2. Illustration of the training process of the adversarial feature augmentation
method. The AFA model takes the video representation as input and disentangles it into
temporal coherence and temporal motion parts. Then, the AFA model changes the scale
of temporal motion features by an adversarial coefficient generated from the Gaussian
distribution. The original temporal coherence features and the changed motion features
are fused as the new augmented video representation. Finally, the temporal coherence
features, temporal motion features and the augmented video representation are feed
into the objective functions. The AFA model can be readily incorporated into any video
ReID system as a general component. Best viewed in color.

3 Approach

In this section, we first present our adversarial feature augmentation (AFA)
method and then employ it to distill the temporal coherence features for video
ReID. Finally, we describe the optimization procedure and implementation de-
tails for the proposed AFA method.

3.1 Adversarial Feature Augmentation

Many existing works focus on extracting temporal motion features for video-
based person ReID, such as optical flow [1,43], RNN [29,44,54], and 3D-CNN [21,
24]. However, in this paper, we argue that the temporal coherence is more crit-
ical than the motion clues for the video-based person ReID task, since person
ReID focuses on the maker of the motion but not the motion itself. To highlight
the temporal coherence of video representation, we propose an adversarial fea-
ture augmentation (AFA) method which disentangles the video representation
into temporal coherence and motion parts and randomly changes the temporal
motion part as an adversarial noise for feature augmentation.

We first describe the feature disentangling process. As shown in Fig. 2, given
the video representation which is learned by a CNN model X = Fθ(V), we
disentangle the video representation into the temporal coherence and temporal
motion parts as:

X = XC + XD, (1)

where X = {Xt ∈ Rd}t=1:T denotes the video representation, and XC and XD
respectively denote the temporal coherence and motion features. The T is the
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number of video frames and Xt is the visual embedding of the tth frame, and θ
denotes the parameters of the CNN. The temporal coherence feature XC repre-
sents the invariance in the video sequence. In the pedestrian video, the temporal
coherence features mainly focus on the identity information which is invariant
for different poses and views in different frames. While the temporal motion fea-
tures XD represent the variety and motion in the video. These temporal motion
features not only contain motion clues like gaits but also contain many nois-
es such as pose changing. As quantitatively proved in Fig. 2 of [45], temporal
motion features always have more ambiguities than temporal coherence.

Inspired by the prototypical network [33], we assume all embeddings of dif-
ferent frames {Xt}t=1:T in the video lie in a manifold, and calculate the video
prototype as the center of class:

XC =
1

T

∑
Xt∈X

Xt. (2)

This prototype XC ∈ Rd denotes the temporal coherence part of the video
representation, e.g. the identity information. Then we disentangle the temporal
motion features from the video representation as:

XD = {Xt
D ∈ Rd|Xt

D = Xt −XC}. (3)

In above definition, we classify all other clues as the temporal motion features
except for the identity-related temporal coherence. These temporal motion fea-
tures may include the motions, the varying backgrounds and other noises. In this
paper, we regard temporal motion features as the adversarial noises and utilize
them to distill the temporal coherence features.

Given the disentangled temporal coherence and temporal motion features,
we design an adversarial coefficient δ to generate the adversarial features as:

X ′ = {X ′t|X ′t = XC + δXt
D}, (4)

where X ′ is the augmented new feature with the various motion noise as shown
in Fig. 2. The adversarial coefficient δ randomly varies in the training stage
following a Gaussian distribution N :

δ ∼ N (µ = 1, Σ), (5)

where µ = 1 indicates the expectation of adversarial coefficient is 1, and the stan-
dard deviation Σ is a hyperparameter to control the amplitude of the noise. The
larger standard deviation indicates to increase the noises. In the experiments,
we set the standard deviation as Σ = 0.025.

In the training process, we sample δ to generate the adversarial augment-
ed features with the temporal motion noise. These variable temporal motion
noises break the discriminant, while the video representation will highlight the
temporal constance information and adversarially reduce the influence from mo-
tion noise. By the adversarial training for these motion noise, the learned video
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representation can be robust for the large intra-class variance, including differ-
ent poses, occlusions, and cluttered background. Note that, compared with the
baseline model, our AFA model only introduces a pool layer with negligible com-
puting cost. While in the testing, we fixed δ = 0, which is equal to remove the
adversarial feature augmentation and only use the temporal coherence features
XC for evaluation. It requires no extra cost in the inference process.

3.2 Optimization

Given the new video feature X ′ augmented by our adversarial feature augmenta-
tion method, we optimize it to reduce the influence from motion noise. Instead of
calculating the objective function with the single video representation which is
aggregated from the embeddings of the video sequence, we separately optimize
each augmented feature X ′t to constrain the temporal coherence of the video
representation.

The objective function of our method is formulated as follows:

L(X ′,XC ,XD) = Lcls(X ′) + Ltri(XC) + λLcoh(XD), (6)

which contains three parts: classification loss, triplet loss, and coherence con-
straint. The λ is a rate to balance different loss functions.

1) Classification Loss: We apply the cross entropy loss function as the classifi-
cation loss to learn the identify-specific video representation. For each augmented
feature X ′t ∈ X ′, we first apply a batch normalization layer before the classi-
fier to normalize the scales, since the classification loss is sensitive to the scale
of features. Then we calculate the predicted probabilities of each frame with a
linear classifier:

pk(X ′t) =
exp(WkX

′t)∑
j exp(WjX ′t)

, (7)

where Wk indicate the kth column of the linear classifier, and pk(X ′t) is the
predicted probability of the frame X ′t for kth class. Then we aggregate the
classification results of the frames as the video-based classification result:

pk(X ′) =
1

T

T∑
t=1

pk(X ′t). (8)

Classification results of all frames are concentrative to the same identity, which
constraints the temporal coherence of the video representation. Finally, we apply
the cross-entropy loss to supervise the classifier and representation model:

Lcls(X ′) =
1

|Ω|
∑
X ′∈Ω

K∑
k=1

yk(X ′) log(pk(X ′)), (9)

where yk(X ′) = 1 denotes the ground truth identity of the video clip X ′ is k,
and 0 denotes not. We use Ω to denote the whole training set.
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Algorithm 1 : Adversarial Feature Augmentation

Input: Training video sequences: {V}, maximal iterative number I, The standard
deviation coefficient Σ.

Output: The parameters of video representation network θ.
1: Initialize θ;
2: for i = 1, 2, . . . , I do
3: Randomly select a batch of video sequences from {V};
4: Obtain the original adversarial coefficient X ;
5: Disentangle the video representation into temporal coherence and temporal

motion parts as (1),(2),(3);
6: Generate an adversarial coefficient λ from a Gaussian distribution as (5);
7: Obtain the augmentation video representation X ′ as (4);
8: Update θ ← − ∂

∂θ
L(X ′,XC ,XD) as (6);

9: end for
10: return θ

2) Triplet Loss: We employ the triplet loss function [13] to preserve the rank
relationship among a triplet of samples with a large margin, which increases the
inter-class distance and reduces the intra-class one. The triplet loss is directly
applied on the temporal coherence features to increase the discriminative ability:

Ltri(XC) =
∑
XC∈Ω

[
||XC −X+

C ||
2
2 − ||XC −X−C ||

2
2 +m

]
+
, (10)

where [·]+ indicates the max function max(0, ·), and XC ,X+
C ,X

−
C respectively

denote as the temporal coherence features of the anchor, positive and negative
sample in a triplet. m is a margin to enhance the discriminative ability of learned
features. In the experiments, we apply the adaptive soft margin and hard nega-
tive mining strategies as [13] and measure the distance in the Euclidean space.

3) Coherence Constraint: To further distill the temporal coherence, we devel-
op a coherence constraint loss, which reduces the influence of temporal motion
parts. It is formulated as:

Lcoh(XD) =
∑
XD∈Ω

||XD||2, (11)

where || · ||2 denotes the L2 norm. By this loss function, we aim that the scales of
the temporal motion parts are limited. In other view, it is equal to apply a Mean
Squared Error (MSE) loss to reduce the intra-class variance of video sequence.
To explain the optimization more clearly, we provide Algorithm 1 to detail the
learning process of our AFA method.

3.3 Implementation Details

We employed the ResNet-50 [37] as the basic backbone network for our AFA
method in the experiments, and initialized it with the ImageNet pre-trained
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Table 1. The basic statistics of all datasets in the experiments.

Datasets Identities Sequences Frames Cameras Splits Repetitions

iLIDS-VID [38] 300 600 73 2 150/150 10 times
MARS [51] 1,261 20,715 58 6 625/636 1 time
DukeV [42] 1,404 4,832 168 8 702/702 1 time

parameters. In order to preserve the resolution of the image, we applied a convo-
lution layer with stride = 1, instead of original stride = 2 convolution layer in
the last block of ResNet-50. During training, we apply two data augmentation
methods including the horizontal flipping and the designed video-based random
erasing. This video random erasing data augmentation method erases the same
region for all frames in the same clip, to overcame the partial occlusions. In each
mini-batch, we randomly selected 8 individuals and sampled 4 video clips for
each individual. Each video clips consists of 7 images for MARS and iLIDS-VID
datasets, and 9 images for DukeMTMC-VideoReID dataset, since the video se-
quences in the DukeMTMC-VideoReID dataset are longer than others. Besides,
we only use the optical flows for iLIDS-VID since the better manual alignment.
Each input image is resized as 256 × 128. The standard deviation coefficient Σ
in adversarial coefficient distribution and the balance rate λ of loss functions
are respectively set as 0.025 and 0.1 in the experiments. We trained our model
for 200 epochs in total by the Adam optimizer. The initial learning rate was
0.0001 and was divided by 10 every 50 epochs. The weight decay factor for L2
regularization was set to 0.00001. During evaluation, we removed the feature
augmentation part and used the temporal coherence features for evaluation. We
employed the Euclidean distance as the metric to measure the similarity of t-
wo features. All experiments were implemented with PyTorch 1.3.1 on 2 Nvidia
GTX 1080Ti GPUs. Taking MARS dataset as the example, the whole training
process took about 2.4 hours with data-parallel acceleration.

4 Experiments

In the experiments, we evaluated our method on three public video-based person
ReID benchmarks. We compared the proposed method with other state-of-the-
art approaches and conducted ablation studies and parameter analysis to analyze
our AFA model. In addition, we conducted the transfer testing on the cross-
dataset to investigate the generalization ability.

4.1 Datasets and Settings

We conducted experiments on three challenging datasets including iLIDS-VID [38],
MARS [51], and DukeMTMC-VideoReID [42]. The detailed statistics and evalu-
ation protocols of all datasets are summarized in Table 1. The iLIDS-VID dataset
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contains 600 sequences of 300 pedestrians under two camera views. MARS is
one of the largest public video ReID dataset, including 1261 persons and around
20000 video sequences captured by 6 cameras. Different from other datasets,
the video sequences of the MARS dataset are detected with DPM detector [9],
and tracked by the GMMCP tracker [6], instead of hand-drawn bounding boxes.
These bounding boxes are always misaligned which causes the large intra-class
variances. DukeMTMC-VideoReID [42] is another large-scale video-based bench-
mark, which comprises around 4,832 videos from 1,404 identities. In the following
description, we use the abbreviation “DukeV” to represent the DukeMTMC-
VideoReID dataset for convenience. The video sequences in the DukeV dataset
are longer than videos in other datasets, which contain 168 frames on average.

In the experiments, we adopt the protocol of [38] for iLIDS-VID datasets,
which repeated experiments 10 times and calculated the average accuracy. In
each repeat, the dataset was randomly split into equal-sized training and testing
sets, where the videos from the first camera view are regarded as the query
set and the other as the gallery set. For a fair comparison, we selected the
identical 10 splits as [38], instead of random splits, to avoid the experimental bias
from dataset splitting. For MARS and DukeV datasets, we followed the settings
as [15, 20, 35]. Note that, all the experiments are NOT applied the re-ranking
tricks in the evaluation. We resort to both cumulative matching characteristic
(CMC) curves and mean Average Precision (mAP) as evaluation metrics.

4.2 Comparison with the State-of-the-Art Methods

As shown in the Table 2 and Table 3, we respectively compared our method with
other SOTA methods on the iLIDS-VID, MARS, and DukeV datasets. We can
observe that the proposed AFA method achieves superior performance over other
comparing methods by a large margin on all three benchmarks, which confirms
the importance of the temporal coherence in the video-based person ReID task.

For iLIDS-VID and MARS datasets, we compared our AFA methods against
10 aggregation-based methods and other 9 methods with temporal feature learn-
ing. As shown in Table 2, we summarized the aggregation based methods in the
top group and temporal feature learning methods in the bottom group. For both
iLIDS-VID and MARS datasets, we achieved consistent improvement on Rank-1
and mAP performance.

DUKEV is a recently proposed large scale video ReID dataset, where only a
limited number of works have been evaluated and reported. Table 3 shows the
performance of our AFA method and other SOTA video ReID works including
STA [11], VRSTC [15], COSAM [35], and GLTR [20]. Our AFA method out-
performed all other methods by a large margin, which indicates that our AFA
model is also appropriate for the long term videos.

4.3 Assumption Evaluation

In this paper, we argue the temporal coherence is more critical than the temporal
motion for the video-based person ReID, and propose an AFA method to distill
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Table 2. Comparison with the state-of-the-art video-based person ReID methods on
the iLIDS-VID and MARS datasets.

Method Source
iLIDS-VID MARS

R1 R5 R20 R1 R5 mAP

CNN+XQDA [51] ECCV 2016 54.1 80.7 95.4 65.3 82.0 47.6
QAN [28] CVPR 2017 68.0 86.6 97.4 73.7 84.9 51.7
ASTPN [43] ICCV 2017 62.0 86.0 98.0 44 70 -
RQEN [34] AAAI 2018 76.1 92.9 99.3 73.7 84.9 51.7
DRSTA [22] CVPR 2018 80.2 - - 82.3 - 65.9
CSSA+CASE [1] CVPR 2018 85.4 96.7 99.5 86.3 94.7 76.1
SDM [47] CVPR 2018 60.2 84.7 95.2 71.2 85.7 -
STAL [3] TIP 2019 82.8 95.3 98.8 80.3 90.9 64.5
STA [11] AAAI 2019 - - - 86.3 95.7 80.8
ADFDTA [50] CVPR 2019 86.3 97.4 99.7 87.0 95.4 78.2

DVR [39] TPAMI 2016 41.3 63.5 83.1 - - -
CNN+RNN [29] CVPR 2016 58.0 84.0 96.0 56 69 -
AMOC+ EpicFlow [26] TCSVT 2017 68.7 94.3 99.3 68.3 81.4 52.9
TAM+SRM [54] CVPR 2017 55.2 86.5 97.0 70.6 90.0 50.7
DSAN [41] TMM 2018 61.2 80.7 97.3 69.7 83.4 -
TRL [5] TIP 2018 57.7 81.7 94.1 80.5 91.8 69.1
VRSTC [15] CVPR 2019 83.4 95.5 99.5 88.5 96.5 82.3
COSAM [35] ICCV 2019 79.6 95.3 - 84.9 95.5 79.9
GLTR [20] ICCV 2019 86.0 98.0 - 87.0 95.8 78.5

AFA ours 88.5 96.8 99.7 90.2 96.6 82.9

the main feature. To quantitatively evaluate which is better between temporal
coherence and motion, we respectively supposed temporal coherence feature or
motion feature is more important and applied AFA method to highlight them.
As shown in the part (a) of Fig. 3, we compare the performance under these
two assumptions on the MARS dataset. The red and blue curves respectively
denote that we apply the AFA method to distill the temporal coherence and
motion features. We can observe that using AFA method to distill the temporal
coherence features obtains the dramatic improvement than the temporal motion
based one. Furthermore, the performance steadily declines when we increase the
standard deviation coefficient Σ, ( larger Σ indicates larger augmentation). It
is because the motion features may contain many noises from the occlusions,
pose changing and cluttered background. Compared with the intra-class noise,
the effect from beneficial clues of the temporal motion (like gaits) is limited.

4.4 Ablation Studies

In this subsection, we evaluated the generality of our AFA method for different
baseline models, and investigated the contributions of different components. We
summarized the comparison results on the MARS dataset in different settings
in Table 4 and separately analyzed each component as follows:
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Table 3. Comparison with the state-of-the-art video-based person ReID methods on
the DukeMTMC-VideoReID dataset.

Method Source
DukeMTMC-VideoReID

R1 R5 R10 R20 mAP

STA [11] AAAI 2019 96.2 99.3 99.6 - 94.9
VRSTC [15] CVPR 2019 95.0 99.1 99.4 - 93.5
COSAM [35] ICCV 2019 95.4 99.3 - 99.8 94.1
GLTR [20] ICCV 2019 96.3 99.3 - 99.7 93.7

AFA ours 97.2 99.4 99.7 99.9 95.4

The generality for different baselines: We compared our AFA methods
with two baselines, including original ResNet-50 [12] and QAN [28]. We imple-
mented these two baselines with the same parameters and then added our AFA
component. In the QAN* + AFA setting, we apply the quality attention to
obtain the temporal coherence features. As shown in the top part of Table 4,
our AFA module can obviously improve the baseline network by distilling the
temporal coherence features.

Loss functions: The loss functions of our method including three part-
s: triplet loss, cross-entropy loss, and MES-based coherence constraint loss. We
compared and analyzed the effectiveness of different loss functions. We employed
the triplet loss as the basic objective functions in our method and use the orig-
inal ResNet-50 as the baseline model. As shown the bottom part of Table 4,
we achieved a superior performance when we additionally employed the cross-
entropy loss to supervise the classification results of all frames are concentrative
to the same identity. While the MES-based coherence constraint loss further
promotes the performance. Note that both the ResNet-50 + AFA and Ltri +
Lcls + Lcoh settings denote the full AFA method. We display it twice in the
both top and bottom parts of Table 4 for more clear comparison.

4.5 Parameters Analysis

We conducted parameters analysis about the standard deviation coefficient Σ
in adversarial coefficient distribution and the balance rate λ of loss functions.

Standard deviation coefficient Σ: In the AFA method, we randomly
sample the adversarial coefficients δ from a Gaussian distribution N to generate
the adversarial augmented features. The standard deviation coefficient Σ in the
Gaussian distribution indicates the scale of the noisy temporal motion feature.
In the part (a) of Fig. 3, the abscissa is the reciprocal of Σ and the ordinate
denotes the performance on the MARS dataset. We observe that the performance
is slightly lower when the standard deviation coefficient Σ is too large to interfere
the training process.

Balance rate λ: We apply a trade-off parameter λ to balance different loss
functions. Following the [35], we also set and fixed the rate between the triplet
loss and cross-entropy loss as 1. In this subsection, we mainly discuss the balance
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Table 4. Ablation studies on the MARS and DUKEV datasets, including the evalu-
ations of AFA model, different baselines, and loss functions. The * indicates that the
method is reproduced by ourself with the same backbone and hyperparameters of AFA.

Method
MARS DukeV

R1 R5 R10 mAP R1 R5 R10 mAP

ResNet-50 88.1 95.6 96.8 80.1 95.2 99.2 99.7 94.3
QAN* 88.6 95.2 96.9 80.9 95.5 98.8 99.6 94.5
ResNet-50 + AFA 90.2 96.6 97.6 82.9 97.2 99.4 99.7 95.4
QAN* + AFA 89.7 96.8 97.4 82.2 97.2 99.5 99.7 95.5

Ltri only 85.3 93.2 95.4 78.7 94.3 98.9 99.3 93.2
Ltri + Lcls 89.8 96.2 97.2 82.6 96.6 99.3 99.7 95.0
Ltri + Lcls + Lcoh 90.2 96.6 97.6 82.9 97.2 99.4 99.7 95.4

(a) (b)

Fig. 3. Parameters analysis on the MARS dataset about (a) the standard deviation
coefficient Σ and (b) the balance rate λ.

rate on the coherence constraint loss. As shown in the part (b) in Fig. 3, the
performance of different balance rates on the MARS dataset is stable, which
indicates the robustness of the AFA method for the trade-off parameter of the
coherence constraint loss.

4.6 Cross-Dataset Evaluation

In real surveillance systems, it requires intensive human labor to label over-
whelming amount of data for training model. Thus, the cross-dataset evaluation
is an important evaluation metric for person ReID systems, which measures the
generalization ability of the ReID model for unseen persons and scenes. Many ex-
isting works [3,28,29] have conducted this cross-dataset evaluation, which train
the model on the iLIDS-VID [38] dataset and test it on PRID-2011 [14].

However, this experimental setting has two main problems. First, the perfor-
mance is unstable for different splits of the iLIDS-VID and PRID-2011 datasets.
Thus, the comparisons from different works may be unfair. Second, the scales
of the iLIDS-VID and PRID-2011 datasets are limited, which are not enough to
represent the real surveillance system environment. For above reasons, we pro-
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Table 5. Cross dataset evaluations between the MARS and DukeV datasets. The
* indicates that the method is reproduced by ourself with the same backbone and
hyperparameters of our AFA method.

Method
MARS → DukeV DukeV → MARS

R1 R5 R10 mAP R1 R5 R10 mAP

Baseline 37.6 56.3 63.9 31.8 43.3 58. 6 64.5 23.8
QAN* 38.9 59.3 64.5 33.0 43.3 58.8 64.6 24.1

AFA 41.5 59.1 67.0 34.6 44.2 58.8 64.6 24.5

pose to use the MARS and DUKEV datasets for cross-dataset evaluation, which
both are large-scale benchmarks with the single fixed split.

As shown in Table 5, we trained the model with the data in the MARS
dataset and tested it with the samples in the DukeV dataset, and vice versa. We
compared the generalization abilities of the ResNet-50 baseline, QAN [28], and
our AFA method. All the methods are using the similar backbone network and
hyperparameters. For both evaluation settings, our AFA method obtained the
superior performance than the baseline method and QAN method.

5 Conclusion

In this work, we have argued that the temporal coherence is more critical than
motion clues for the video based person ReID task. To distill these temporal
coherence clues, we have proposed an adversarial feature augmentation (AFA)
method, which disentangles the video representation into the temporal coherence
and temporal motion parts and highlights the temporal coherence features by
generating the adversarial augmented features with the variable temporal motion
noise. The proposed AFA model can be incorporated into other video ReID
methods with negligible cost, as a general lightweight component. Extensive
experimental results demonstrate the importance the temporal coherence and
validate the effectiveness of our AFA approach.
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