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Spatial-Temporal Attention-aware Learning for
Video-based Person Re-identification
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Abstract—In this paper, we present a spatial-temporal
attention-aware learning (STAL) method for video-based person
re-identification. Most existing person re-identification methods
aggregate image features identically to represent persons, which
are extracted from the same receptive field across video frames.
However, the image quality may be varying for different spatial
regions and changing over time, which shall contribute to person
representation and matching adaptively. Our STAL method aims
to attend to the salient parts of persons in videos jointly in
both spatial and temporal domains. To achieve this, we slice
the video into multiple spatial-temporal units which preserve
the body structure of a person and develop a joint spatial-
temporal attention model to learn the quality scores of these
units. We evaluate the proposed method on three challenging
datasets including iLIDS-VID, PRID-2011 and the large-scale
MARS dataset, and consistently improve the rank-1 accuracy
by a large margin of 5.7%, 0.9%, and 6.6% respectively, in
comparison with the state-of-the-art methods.

Index Terms—Person re-identification, Spatial-temporal atten-
tion model

I. INTRODUCTION

Person re-identification (ReID) attempts to match pedestri-
ans across multiple cameras, with great potential in surveil-
lance applications [1]. It is such an intriguing vision problem
because of complicated intra-camera variances in pose, illumi-
nation, viewpoint, partial occlusion, and cluttered background.
Conventional works [2]–[5] address above problems by ex-
tracting robust invariant features and learning a discriminative
metric subspace to accommodate inter-camera variances. How-
ever, the hand-craft features require strong prior knowledge yet
lack of semantic clue. Recently, deep neural networks have
been successfully applied for image-based person ReID [3],
[6], [7] to learn discriminative image representations in an
end-to-end fashion.
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Person re-identification from videos captured by multiple
cameras is a more practical setting than from still images
and gains increasing research interests [8]–[19] recently. In
fact, surveillance videos with pedestrians are the original
data for image-based person ReID before pre-processing and
preserve abundant and potentially complementary spatial-
temporal characteristics of pedestrian, from different poses and
view angles. However, identifying discriminative regions on
pedestrian against distractions and aggregating their features
are not straightforward for representing and matching person-
s in spatial-temporal domains. Naturally, most video-based
ReID methods [20]–[22] employ a CNN-RNN structure to
extract image features and apply average pooling to aggregate
them. Nonetheless, in these ways, the matching of persons is
sensitive to or may be misled by some “bad” samples due
to occlusions or clutter background, since features from all
frames and regions contribute equally to the matching. For
example, when two persons are occluded by the same object,
the similar appearance on occluded parts may result in a false
positive in person ReID.

To address the above problems, we propose in this paper
a spatial-temporal attention-aware learning (STAL) method
for video-based person ReID. Motivated by the observations
that image qualities in videos are varying in both spatial and
temporal domains, the STAL method aims to jointly identify
and match the spatial and temporal salient parts dynamically.
As shown in Fig. 1, the proposed method avoids the misleading
from “bad” parts of video by the attention mechanism. To
achieve this, we slice the pedestrian video into multiple spatial-
temporal units and develop a joint spatial-temporal attention
model for evaluating the quality scores of individual units.
The temporal attention model strives to identify those frames
with clear and complete human figures in a representative gait.
While the spatial attention model explores the discriminative
salient body parts.

Specifically, our STAL framework includes three main
branches: a global representation branch, a local represen-
tation branch, and a spatial-temporal attention branch. The
global representation branch extracts perceptual features for
the appearance of the entire body with a Convolutional Neural
Network (CNN). The local representation branch crops differ-
ent body parts with a pose estimation algorithm and collects
local features of different body parts. Then, with the attention
scores generated by the spatial-temporal attention branch, the
local representations of different spatial-temporal units are
aggregated into the final representation, where the possible
blurred, ambiguous, or occluded units are down-weighted. To
leverage the merits of complementary global feature and local
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Fig. 1. Difference between proposed method and conventional methods. The left part shows that conventional methods treat image-based feature maps equally
and aggregate them by average pooling. The right part shows that the proposed method considers spatial attention on image-based features and temporal
attention for feature aggregation.(Best viewed in color)

feature, we integrate them in the metrics and construct an
end-to-end deep neural network architecture to learn them
simultaneously. Extensive experimental results on three public
video datasets including PRID-2011 [23], iLIDS-VID [8], and
MARS [12] demonstrate consistent improvement and superior
cross-dataset generalization ability of our method.

We summarize three key contributions of our work as
follows:

1) We propose a STAL algorithm to attend to the salient
parts of pedestrian videos on both temporal and spatial di-
mensions. We slice the pedestrian video into multiple spatial-
temporal units and focus on the ”key” ones by learning a joint
spatial-temporal attention score map.

2) We embed the spatial-temporal attention branch and CNN
representation learning branch in an end-to-end framework and
train it with a designed consistent loss.

3) We conduct extensive experiments on three challeng-
ing video datasets to demonstrate the efficacy of our STAL
method. The results show that the proposed method outper-
forms other state-of-the-art methods.

II. RELATED WORK

Recent years have witnessed the extensive studies of person
re-identification. Existing ReID methods are roughly classified
into two categories: image-based approaches and video-based
approaches. In this section, we first review some related
works about both image-based and video-based person ReID.
Then, we briefly describe the attention model, which is widely
applied in the person re-identification problem.

A. Image-based Person Re-identification

Previous image-based works [2], [4], [6], [18], [24]–[30]
aim to extract the robust discriminative feature representation
and learn effective metric distance. Feature learning meth-
ods [2], [24], [31]–[35] try to build a distinctive and robust
image representation which is invariant to environmental and

viewpoint changes. For example, LOMO [2] and GOG [24]
are hand-crafted descriptors that combine the color and texture
features. Salience match [32] and mid-level filter [34] find the
salience patch of the pedestrian by a learning algorithm. Be-
sides robust features, metric learning also plays a determining
role in person ReID. Some methods [2], [36]–[39] learn a
discriminant subspace or an integrated metric to emphasize
inter-person distance and deemphasize intra-person distance.
While Prosser et al. [40] formulate the person re-identification
problem as a ranking problem and apply the RankSVM to
learn a subspace for similarity measure. Recently, deep neural
networks have been applied to person ReID successfully
to jointly learn feature representation and similarity metric.
Some works [3], [41], [42] formulate ReID as a binary
verification problem and apply the siamese network to extract
deep features. In addition, to preserve the rank relationship
with a margin among a triplet of person samples, the triplet
loss [1], [25], [30], [43] are proposed to learn robust CNN
features. In addition, some other works [6], [44], [45] consider
ReID as a multi-class recognition problem and learn the deep
discriminative features with the softmax loss.

B. Video-based Person Re-identification

Video sequences provide abundant and diverse person sam-
ples and their possible correspondences in consecutive frames.
Thus, video-based person ReID methods [8]–[19] take great
efforts to leverage the motion cue and identify informative
samples along the time axis for re-identification, ranging
from low-level spatial-temporal feature extraction to high-level
key frame selection or image-based feature aggregation. For
example, some previous methods [9], [10], [14] take motion
into consideration and employ the HOG3D features [46] on
person videos as spatial-temporal features. Wang et al. [47]
slice videos into multiple segments according to walking cycle,
and select and rank discriminative frame segments. Then,
to aggregate image-based features temporally, McLaughlin et
al. [15] and Zhou et al. [19] apply a temporal pooling layer
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to combine features captured by the CNN-RNN model; and
QAN [48] designs a quality-aware network to estimate the
image quality scores and integrates the frame-wise features
weighted by these scores. While RFANet [49] employs a long
short-term memory (LSTM) network to aggregate the image-
based feature. Our work is related to QAN [48] in that we also
integrate person features from an image sequence. A major
difference is that we further develop a spatial attention model
to find the salient regions on the person body, instead of only
focusing on the frame-level attention [48].

C. Attention Model

Attention model [50] is a natural imitation of the human per-
ception process which concentrates on what we are interested
in. The visual attention mechanism has two common models:
recurrent attention perception and interested region mask.
Recently, many works [51]–[54] have implemented these two
attention models with deep neural networks, especially using
recurrent neural networks (RNN) and long short term memory
(LSTM), for vision problems. For instance, Kelvin et al. [52]
propose a recurrent attention model to learn a sequence of
image attentions about each word in a caption. Xiao et al. [53]
propose a two-level attention model to generate candidate
patches and localize discriminative parts spatially. Attention
models have been also applied for person ReID to learn the
salient parts of persons to boost performance [19], [25]. Liu et
al. [25] propose an end-to-end comparative attention network
which designs an LSTM network to obtain multiple attention
maps. Zhou et al. [19] employ an attentive temporal RNN
model to represent videos and apply a spatial recurrent model
on pair-wise metric learning. Different from these attention
methods, our STAL method learns a spatial-temporal attention
score map to indicate the qualities of different parts of the
pedestrian.

III. APPROACH

The goal of our STAL method is to jointly explore the
salience of person videos in both spatial and temporal domain-
s. Therefore, we first slice the videos into multiple spatial-
temporal units and then learn an attention score map which
indicates the qualities of all space-time bins.

A. Overall Architecture

Given a pedestrian video X = {xt}t=1:T , where T is
the number of video frames and xt denotes the tth frame.
As shown in Fig. 2, the proposed network is divided into
two branches: a global representation branch and a local
representation branch. They are fused in an end-to-end frame-
work to learn discriminative person representation in different
granularities.

The global representation branch is designed to learn the
full body representation of pedestrians. In this branch, at the
beginning of the process, image sequence X is fed into a low-
level CNN to generate the low-level representations, after that,
we apply a residual attention network (RAN) in a high-level
CNN to extract global features gt = G(xt). Please refer to
section 3.2 for the details of RAN.

The local representation branch is used to address the
local variance of person video, e.g., local mismatching due
to pose variance. In this branch, we first apply a human
pose estimation algorithm [28] to locate the body joints and
generate the body part coordinates pr,t = {p1, p2, p3, p4}r,t
based on the estimated joints. The local part generator is
pretrained with the MPII human pose dataset [55]. Then we
apply an ROI pooling layer with body part coordinates on
the feature maps by the low-level CNN and design a part-
specific network (the light blue box in Fig.2) to generate the
local part representation. The part-specific network has the
same structure for different body parts but learns the different
parameters. The whole processing is formulated as:

{fr,t}r=1:R,t=1:T = F(xt, pr,t), (1)

where fr,t represents the local feature of rth spatial body part
in Xt.

In addition, we also develop a separate attention branch
to learn a joint spatial-temporal attention score map ar,t =
A(X), which is used to evaluate the qualities of different
spatial-temporal units. The temporal attention focuses on the
key frames with rich discriminative information, while the spa-
tial attention identifies the body parts which are not corrupted
by occlusions and cluttered background. Finally, we define an
aggregation function of local features fr,t with the attention
scores ar,t to calculate the distance between two pedestrian
video clips, which is formulated as:

dl(i, j) = ψ(fr,ti , fr,tj ; ar,ti , ar,tj ), (2)

where i, j denote two person videos captured in different
cameras. We aggregate the global features with different
frames in a temporal pooling layer and calculate the global
distance as dg(i, j) = ||gi−gj ||2, where gi denotes the global
feature of ith person. In the training procedure, we optimize
the objective function with both global and local distance,
while in the testing procedure, we add them for the final
similarity measure.

The objective function of our method is formulated as
follows:

min
G,F,A

= Ltri(G,F ,A) + Lcls(G) + Ccons(F) (3)

which contains three parts: triplet loss, softmax loss, and
consistency constraint.

1) Triplet Loss: We design the triplet loss to preserve the
rank relationship among a triplet of pedestrian videos. In the
triplet loss, the distances between feature pairs from the same
class are minimized while the ones from different classes are
maximized. We calculate the triplet loss with both global and
local features as follows:

Ltri =
∑

i,j,k∈Ω

[dg(i, j)− dg(i, k) +mg]+

+
∑

i,j,k∈Ω

λ[dl(i, j)− dl(i, k) +ml]+,
(4)

where mg and ml are margin thresholds to limit the gap
between the distances from positive and negative samples, and
[x]+ denotes the max function max(0, x).
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Fig. 2. The network architecture of the STAL algorithm. (a) illustrates the procedure that we calculate the metric between two person videos by the
global feature, local features and spatial attention scores learned by STAL. Specifically, we measure the global distance with global feature and calculate the
local distance with local features of different spatial body parts and corresponding spatial attention scores. Then we add the global and local distances for
similarity measure. (b) shows the detailed architecture of our STAL method, which extracts the global feature, local features and spatial attention scores of
the given video clip. The network has three branches: a global representation branch, a local representation branch, and a spatial-temporal attention branch.
In the global representation branch, we apply a CNN to capture the overall appearance information of each frame and aggregate these features with temporal
pooling. In the backbone CNN, we build an additive residual attention network (RAN) to highlight the human body. For the local representation branch, we
first apply a human pose estimation algorithm to locate the body joints and generate bounding boxes of different body parts. Then we use the ROI pooling
layer and part-specific networks to generate local representations. To effectively aggregate these local representations of spatial-temporal parts, we design a
spatial-temporal attention branch to learn the attention scores of individual frames and body parts as weighting coefficients. (Best viewed in color)

2) Softmax Loss: We apply the softmax loss function to
learn the identity-specific global representation. Different from
triplet loss, the softmax loss focuses on the robustness of
person video representations for identification. The softmax
loss is defined as:

Lcls =
∑
i∈Ω

exp(W g
yi
gi)∑

k exp(W
g
k gi)

, (5)

where yi is the identity of ith person and W g
yi
,W g

k indicate
yith and kth columns of the softmax matrix.

3) Consistency Constraint: To preserve the consistency
between local and global features, we develop a consistency
constraint in our framework, which requests that the identifies
of single local feature and global feature are identical:

Cconsis =
∑
i∈Ω

∑
r,t

exp(W r
yi
fr,ti )∑

k exp(W
r
k f

r,t
i )

, (6)

Note that the same parts in different frames share the same

softmax matrix.

B. Spatial-Temporal Feature Learning

To capture the overall appearance of pedestrians, we learn
global features on the person’s whole body. To cope with
the variance of person pose and leverage the body structure
information, we propose to slice the pedestrian videos into
multiple spatial-temporal units and extract local features. As
shown in Fig. 2, the low-level CNN is shared for both local
features and global feature, which are applied to collect se-
mantic information. The residual attention structure is applied
to extract the global features, while a body part generation
model and an ROI pooling layer are employed to learn local
features.

Residual Attention Network Inspired by [56], we build
a residual attention branch on the CNN backbone to highlight
the human body. Instead of the stack architecture, we only add
the attention branch on the low-level feature maps which have
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Fig. 3. Illustration of Residual Attention Network and Local Parts Generation. (a) The detail architecture of Residual Attention Network. (b) Body joints of
a person image in MARS. (c) Body joints assignment and local part generation. (d) A example of generated local body parts.

enough resolution to estimate the attention, since the higher
level feature maps are too coarse to observe precise attention
masks. As shown in part (a) of Fig. 3, the residual attention
branch is divided into a downpooling module, an uppooling
module and a sigmoid layer. To lower computational cost, we
further sample the downpooling module and uppooling module
in the [56]. Specifically, the downpooling module contains
2 convolution layers and a max pooling layer to extract the
discriminative information of input feature maps. While the
uppooling module, which contains a deconvolution layer and
a convolution layer, recovers the resolution of the mask to raw
input. We also apply a sigmoid layer to normalize the attention
mask range to [0, 1]. In the end, we multiple the soft masks
with the original outputs of the CNN network as the output of
the attention branch and sum up the outputs of attention block
and CNN block.

Local Parts Generation In the temporal dimension, the
pedestrian video is sliced into frames. We assume that frames
are sampled at regular intervals and take every frame as a
temporal unit. While in the spatial dimension, we consider
about human body structure and segment a person crop into
multiple body part regions.

Given a person crop, we first locate 14 joints of human body
Ji ∈ RX×Y

i=1:14 as Fig. 3 (b) with a human pose estimation
network [28] which is pretrained on the MPII human pose
dataset [55]. We incorporate the pose estimation network into
our end-to-end framework and refine it with the ReID training
set. Then, we utilize these 14 joints to generate 6 coarse
body part regions, which corresponds to head, torso, right
arm, left arm, right leg and left leg. As shown in Fig. 3 (c),
we assign the 14 body joints to these 6 parts, the head part
P1 = [J1, J2, J3, J6], the torso part P2 = [J2, J3, J6, J9, J12],
the right arm part P3 = [J3, J4, J5], the left arm part
P4 = [J6, J7, J8], the right leg part P5 = [J12, J13, J14],
and the right leg part P6 = [J9, J10, J11], respectively. The
bounding box of corresponding part is generated by joints as:

pr = {p1, p2, p3, p4}r

= {min
J∈Pr

x(J),max
J∈Pr

x(J), min
J∈Pr

y(J),max
J∈Pr

y(J)}r (7)

An example of the generated local body parts is visualized in
Fig. 3 (c).

As shown in Fig. 2, given the generated local body parts
pr, and the feature maps by the low-level CNN, we apply
an ROI pooling layer to obtain the local feature maps of
different body parts. Then we additionally apply a part-specific
CNN network to generate the feature representation of local
body parts based on the local feature maps. The part-specific
networks of different body parts are independent with the same
architecture. The local part estimator is applied softly in our
STAL method and refined with the person ReID objective. This
is being said, the estimated body part regions with deviations
are not sensitive for the person verification since its impact
is relatively down-weighted by the following attention model.
This scheme makes it flexible to adopt any pre-trained pose
estimation model.

C. Spatial-Temporal Attention Model

In the pedestrian videos of the real surveillance system, the
qualities of different frames and regions vary dramatically due
to occlusions, illumination and cluttered background. Some
“bad” samples may mislead the matching of pedestrian videos
if we treat all samples equally. To promote the discriminative
samples and punish the “bad” ones, we propose a spatial-
temporal attention network (STAN), for learning the attention
scores of individual frames and body parts. Fig. 2 (b) shows
the detailed network architecture of the STAN, which includes
a 7 × 7 convolution layer, two 3 × 3 convolution layers,
a 7 × 7 max pooling layer, a fully connected layer whose
output is T × R and a sigmoid layer. Three convolution
layers are applied to gather image textural information and
the fully connected layer generates the raw attention scores.
To normalize the scores into [0, 1], we employ a sigmoid layer
on the attention scores. Finally, we apply the L1 normalization
layer for the attention map to avoid the mismatch caused by
scale offset. The output of STAN, {ar,t}, is a T × R score
map, which corresponds to T frames and R body parts.

Then, with the attention score map ar,t, we aggregate
all local spatial-temporal features fr,t on both temporal and
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spatial domains in an attention-aware way. To promote the
high-quality spatial-temporal units and down-weight the low-
quality ones in the metric, we denote the aggregated function
ψ(·) as:

ψ(fr,ti , fr,tj ; ar,ti , ar,tj ) =

R∑
r=1

āri ā
r
j

||āi||||āj ||
||fri − frj ||2, (8)

where fri denotes the spatial representation aggregated on the
temporal dimension, which is formulated as:

fri =

∑T
t=1 a

r,t
i fr,ti∑T

t=1 a
r,t
i

. (9)

āri is the attention score of spatial feature fri , which is eval-
uated by the mean of score map on the temporal dimension.
||āi|| is a normalization term on the spatial scores to avoid the
scale offset.

Guided by the spatial-temporal attention scores, the part
pairs with higher scores lead the matching of two individuals.
Finally, we aggregate the local features of all spatial-temporal
parts to form a fixed feature vector to represent videos with
a variable number of frames. Note that the average pooling
is a special case of the proposed attention-aware aggregated
method when all attention scores are identical in both temporal
and spatial dimensions.

D. Backpropagation

In this subsection, we calculate the backpropagation of
attention scores in two stages: metric calculation and tem-
poral feature aggregation. For simplification, we only take the
gradients of the attention score of one person ar,ti into account.

In the metric calculation stage, the loss of metric ψ back
propagates to the regional video representations fri and nor-
malized regional attention scores an

r
i =

ār
i

||āi|| , which is
formulated as follows:

∂ψ

∂fri
= an

r
i an

r
j

fri − frj
||fri − frj ||2

∂ψ

∂anr
i

=

R∑
r=1

an
r
j ||fri − frj ||2.

(10)

While in the temporal feature aggregation stage, the back-
propagation of fri is formulated as:

∂fri
∂ar,ti

=
fr,ti − fri∑T

t=1 a
r,t
i

. (11)

The gradient of regional attention scores anr
i as Eq. 6:

∂an
r
i

∂ar,ti

=
1− anr

i

||āi||
. (12)

Thus we formulate the propagation process of ψ as:

∂ψ

∂ar,ti

=
∂ψ

∂fri

∂fri
∂ar,ti

+
∂ψ

∂anr
i

∂an
r
i

∂ar,ti

(13)

TABLE I
DETAILED STRUCTURE OF OUR PROPOSED CNN

layer name kernel
size

stride output size

input 3× 224× 224
conv1 7× 7 2 64× 224× 224
pool1 3× 3 2 64× 112× 112
conv2 1× 1 1× 1 1 64× 112× 112
conv2 3× 3 3× 3 1 192× 112× 112
pool2 3× 3 2 192× 56× 56
inception3a 2 256× 28× 28
inception3b 1 320× 28× 28
inception3c 2 576× 14× 14
inception4a 1 576× 14× 14
inception4b 1 576× 14× 14

inception4c 1 576× 14× 14
ran conv1 1× 1 1 64× 14× 14
ran pool1 3× 3 2 64× 7× 7
ran conv2 3× 3 1 192× 7× 7
deconv 4× 4 2 192× 14× 14
conv3 1× 1 1 576× 14× 14
inception4d 1 576× 14× 14
inception4e 2 1024× 7× 7
inception5a 1 1024× 7× 7
inception5b 1 1024× 7× 7
pool f 7× 7 1 1024

inception4c part 1 576× 8× 8
inception4d part 1 576× 8× 8
inception4e part 2 1024× 4× 4
fc part 1024

E. Implementation Details

We select Caffe [57] as the basic toolbox to implement
our experiments. To make the network easy to converge,
we apply the GoogleNet which is pretrained on the
ImageNet as the basic backbone network. Specifically,
we follow the network definition and implementation
details of the backbone GoogleNet of Caffe as http-
s://github.com/BVLC/caffe/tree/master/models/bvlc googlenet.
As shown in Fig. 2 (b), we split the GoogleNet into the
low-level CNN and high-level CNN at the inception-4b layer,
since the inception-4c layer has a better trade-off between
semantic information and resolution. As shown in Table. I,
we introduce the structure of our CNN in the detail by listing
the kernel size, stride and output size of each layer. Note
that we design the part-specific network for different body
parts with the same structure as inception part. The output
of low-level CNN and part coordinates are fed into the ROI
pooling layer to generate part representations.

In the training stage, we feed a triplet of person videos into
our network as a batch, which contains an anchor sample, a
positive sample, and a negative sample. We sample T = 8
frames of a video into a batch and resize them to 224× 224.
The middle representations generated by the shared low-level
CNN are 14×14 feature maps. We apply the ROI pooling layer
on them to get 8 × 8 local middle representation of different
body parts. Then, the three inception layers and an FC layer
are employed to generate local features. Finally, the global rep-
resentation is a 1024 dimension feature pooled by GoogleNet,
while local representations are also 1024 dimension features
generated by FC layer. We set global margin mg = 1.2 and
local margin ml = 0.8 in the Eq. 4. To have a trade-off, we
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TABLE II
THE BASIC INFORMATION OF ALL DATASETS IN THE EXPERIMENTS

Datasets PRID-2011 iLIDS-VID MARS
Identities 200 300 1261
Tracklets 400 600 21K
Cameras 2 2 6
Images 42K 44K 1.1M
Crop Size 128× 64 Vary 256× 128
Label Method Hand Hand DPM+GMMCP
Splits Random Random Fixed
Matching Closed-Set Closed-Set Open-Set
Evaluation CMC CMC CMC & mAP

Fig. 4. Samples of iLIDS-VID, PRID-2011 and MARS datasets. The top
two rows show the video from PRID-2011, the middle two rows are sampled
from iLIDS-VID, and the bottom part is the pedestrian samples from MARS.

set the rate between global triplet loss and local triplet loss
in the Eq. 4 as λ = 0.3. We apply the SGD as the optimizer
with momentum 0.9 and gamma 0.5. The learning rate is set
to 0.001 and the weight decay factor for L2 regularization
is set to 0.0002. We train our model for 13500, 6500 and
150000 iterations(triplets) on the iLIDS-VID, PRID-2011 and
MARS dataset respectively. Note that, we do not adopt any
data argumentation methods (e.g., scaling, rotation, flipping,
and color distortion)

During the evaluation, we first extract both global features
and local features and aggregate them with learned temporal
attention score. Then we calculate the similarity matrix for
each feature independently with Euclidean distance and weight
all local distance matrices by spatial attention scores. Finally
the global distance and local distance are fused by a rate as
d = dl + 0.3dg .

IV. EXPERIMENTS

We evaluated our method on three available pedestrian
video datasets including iLIDS-VID [8], PRID-2011 [23], and
MARS [12] and compared with the baseline methods and other
state-of-the-art methods.

A. Datasets and Settings

The basic information of three datasets in our experiments
is summarized in Table II and some pedestrian video samples
are displayed in Fig. 4.

1) PRID-2011: The PRID-2011 dataset contains videos
recorded from two non-overlapping surveillance cameras. 385
persons are under camera A, while 749 persons are under
camera B. Among all pedestrian videos, 400 videos of 200
pedestrians are captured in both two cameras. Each video has
5 to 675 frames with an average number of 100. To ensure the
effective length of videos, we selected videos of 178 identities
with more than 27 frames. As shown in the top of Fig. 4, this
dataset was captured in uncrowded outdoor scenes with large
illumination and viewpoint change.

2) iLIDS-VID: The iLIDS-VID dataset contains 600 pieces
of videos for 300 randomly sampled people. Each person
has one pair of video from two camera views, which have
variable lengths from 23 to 193 frames with an average of 73
frames. As shown in the bottom of Fig. 4, the videos captured
in a crowded airport arrival hall are challenging for similar
appearance, cluttered background, and random occlusion.

3) MARS: The Motion Analysis and Re-identification Set
(MARS) is a video extension of Market1051 [58] dataset
which contains 1261 persons and around 20000 video se-
quences. These sequences are captured by 6 cameras at most
and 2 cameras at least, from which each identity has 13.2
sequences on average. Videos of MARS dataset generated by
a DPM detector [59] and a GMMCP tracker [60], instead of
hand-drawn bounding boxes. The challenge of this dataset
is largely in the variance of viewpoints and complicated
occlusions.

Following the protocol of [8] for PRID-2011 and iLIDS-
VID datasets, we labeled videos from the first camera as the
probe set, while the others as the gallery set. We randomly split
persons into equal-sized training and testing sets and repeated
experiments 10 times and calculated the average accuracy. The
experimental setup of MARS is the same as [12], which fixes
the partition of 625 train persons and 634 test persons. We
resorted to both cumulative matching characteristic (CMC)
curve and mean Average Precision (mAP) as the evaluation
metrics. CMC curves record the true matching within the top
n ranks, while mAP scores consider precision and recall to
evaluate the overall performance of methods. Noting that mAP
needs to calculate recall for multiple ground truths, we only
calculated CMC curve on PRID-2011 and iLIDS-VID datasets
which only have one ground truth.

B. Comparison with the State-of-the-Art Methods

In this subsection, we compared the proposed approach with
other state-of-the-art methods on three challenging datasets
which include DVDL [10], DVR [8], TDL [14], STFV3D [11],
RFANet+RSVM [49], LMKDCCA [61], CNN+RNN [20],
CNN+XQDA [12], BRNN [22], GRU [7], AMOC [21],
TAM+SRM [19], QAN [48], RQEN [63], TriNet [43], and
ASTPN [62].

iLIDS-VID: Table III shows the performances of our
STAL approach and most existing video-based person re-
identification approaches on iLIDS-VID. Our STAL method
improves over all of the compared methods and outperforms
the second best method substantially by 6%, due to the
improvement of the spatial-temporal salience parts learning.
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TABLE III
COMPARISON WITH STATE-OF-THE-ART PERSON RE-IDENTIFICATION

METHODS ON THE ILIDS-VID DATASET.

Datasets iLIDS-VID
Rank@R R=1 R=5 R=10 R=20
DVDL [10] 25.9 48.2 57.3 68.9
DVR [8] 41.3 63.5 72.7 83.1
TDL [14] 56.2 88.2 95.3 97.8
STFV3D+KISSME [11] 44.3 71.7 83.7 91.7
RFANet+RSVM [49] 49.3 76.8 85.3 90.0
LMKDCCA [61] 73.3 90.5 94.7 98.1
CNN+RNN [15] 58.0 84.0 91.0 96.0
CNN+XQDA(MARS) [12] 54.1 80.7 90.0 95.4
BRNN [22] 55.3 85.0 91.7 95.1
GRU [7] 49.8 77.4 90.7 94.6
AMOC+ EpicFlow [21] 68.7 94.3 98.3 99.3
TAM+SRM [19] 55.2 86.5 - 97.0
QAN [48] 68.0 86.6 95.4 97.4
ASTPN [62] 62.0 86.0 94.0 98.0
RQEN [63] 77.1 93.2 97.7 99.4
STAL 82.8 95.3 97.7 98.8
Baseline 76.7 93.5 96.4 98.5

TABLE IV
COMPARISON WITH STATE-OF-THE-ART PERSON RE-IDENTIFICATION

METHODS ON THE PRID-2011 DATASET.

Datasets PRID-2011
Rank@R R=1 R=5 R=10 R=20
DVDL [10] 40.6 69.7 77.8 85.6
DVR [8] 48.3 74.9 87.3 94.4
TDL [14] 58.6 80.8 87.4 93.3
STFV3D+KISSME [11] 62.5 83.6 88.1 89.9
RFANet+RSVM [49] 58.2 85.8 93.4 97.9
LMKDCCA [61] 86.4 97.5 99.6 100
CNN+RNN [15] 70.0 90.0 95.0 97.0
CNN+XQDA [12] 77.2 93.1 96.7 99.1
BRNN [22] 72.8 92.0 95.1 97.6
GRU [7] 42.6 70.2 86.4 92.3
AMOC+ EpicFlow [21] 83.7 98.3 99.4 100
TAM+SRM [19] 79.4 94.4 - 99.3
QAN [48] 90.3 98.2 99.3 100
ASTPN [62] 77.0 95.0 99.0 99.0
RQEN [63] 91.8 98.4 99.3 99.8
STAL 92.7 98.8 99.5 100
Baseline 90.3 98.7 99.6 99.6

We obtained considerable improvement on the Rank 1, since
the proposed method is insensitive to occlusions and cluttered
background, which are major challenges in this dataset.

PRID-2011: As shown in Table IV, we also achieved the
state-of-the-art performance on the PRID-2011 dataset and
outperform 1% than the second best method. The improvement
on PRID-2011 is less than the iLIDS-VID dataset since
the differences among frames and regions are limited. The
main challenge of PRID-2011 dataset is illumination variance
between two camera views. Thus, the improvement of our
STAL method on this dataset is not that significant.

MARS: MARS is a large-scale and realistic dataset since
it was captured in a scene of the crowded supermarket with a
complex environment. Different from the other two datasets,
pedestrian videos of MARS are captured by six cameras.
We evaluated our method without post-processings which are
orthogonal to our method and could be integrated in a straight-
forward manner, such as various re-ranking schemes and data
augmentation [6], [64], [65]. As illustrated in Table V, notably

TABLE V
COMPARISON WITH STATE-OF-THE-ART PERSON RE-IDENTIFICATION

METHODS ON THE MARS DATASETS.

Datasets MARS
Rank@R R=1 R=5 R=20 mAP
CNN+RNN [20] 56 69 73 77
CNN+XQDA [12] 65.2 82.4 89.0 48.0
TAM+SRM [19] 70.6 90.0 97.6 50.7
AMOC+ EpicFlow [21] 68.3 81.4 90.6 52.9
QAN [48] 72.1 85.5 93.2 50.2
ASTPN [62] 44 70 81 -
RQEN [63] 73.7 84.9 91.6 51.7
TriNet [43] 79.8 91.4 - 67.7
STAL + ResNet50 82.2 92.8 98.0 73.5
STAL 80.3 90.9 96.5 64.5
Baseline 71.5 83.3 89.9 50.8

STAL method also achieved the state-of-the-art performance
on the Rank 1 accuracy on the MARS dataset. Different from
iLIDS-VID dataset, the great performance on MARS indicates
the effect of joint spatial-temporal learning and body-structure
information to overcome the large variances with pose and
view changes.

Comparison and Analysis: The QAN [48] method is
a baseline method which only learns frame-level temporal
quality scores and aggregates the features on temporal domain.
Compared with QAN, our proposed method further consider
the attention scores of human body parts and learn the joint
spatial-temporal attention. The proposed method also has the
advantage over TAM+SRM [19], which learns the spatial and
temporal information without explicit attention mechanism.
TAM employs RNN to learn temporal information and use
temporal pooling to aggregate features of every frame. How-
ever, it is difficult to apply the RNN for pedestrian videos due
to the large variance of the pose. The experiments on [14]
have shown that the temporal features like walking actions or
other motions have smaller inter-class variations and difficult
to distinguish. ASTPN [62] designs a joint spatial-temporal
pooling network to learn the spatial and temporal atten-
tion. However, the performance of ASTPN is limited by the
simple attentive mechanism and weak feature representation,
especially on the large-scale dataset, like MARS. Different
from the ASTPN method which uses a matrix to learn the
spatial-temporal attention, the proposed approach learns the
intuitive attention scores of different body parts. RQEN [63]
also considers the region-based spatial attention of the person
image. However, the relation between the temporal dimension
and spatial dimension is ignored. We introduce the body-
structure information in our attention model. TriNet [43] is
a general method for person re-identification, which is not
specific to the video-based problem. In fact, TriNet is also
a baseline method of our STAL method. In our method, we
also apply the Triplet loss in Eq 4 to preserve the rank
relationship among a triplet of samples, which is similar to
TriNet. Moreover, we improve the TriNet with a spatial-
temporal attention-aware learning method to model the video
data and extract video-based feature representation and add the
auxiliary Softmax supervisory signal. Compared with TriNet
experimentally, STAL method has no advantage on both rank-
5 and mAP scores, since the TriNet employ an advanced
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ResNet50 as backbone network while our STAL applies
GoogleNet in the previous manuscript for a fair comparison
with baseline method QAN [48]. In addition, we implemented
our STAL method with similar ResNet50 backbone network
and obtained consistent improvement over TriNet on both
rank-based accuracies and mAP scores.

C. Ablation Experiments

To show the effectiveness of our proposed STAL method,
we conducted several ablation experiments about attention
models; feature representation branches and local body parts.

1) Evaluations of Each Attention Model: To investigate
the contribution of each attention component in the proposed
method, we evaluated the baseline method without attention
model, temporal attention network (TAN), spatial attention
network (SAN) and proposed STAL method on iLIDS-VID
datasets.

Baseline: For a fair evaluation of each attention component,
we trained a baseline model without the modification of
the network. While in the testing stage, we designed some
switches to control the state of attention mechanisms. In the
baseline method, we closed off all attention models by a matrix
which is filled with ones, instead of the real spatial-temporal
attention scores.

TAN: Compared with the baseline method, TAN opened
the switch on temporal frame-level attention to aggregate the
features of frames. Then, we calculated the distances of the
aggregated features of different body parts respectively and
summed them up equally as the final distance measure.

SAN: In contrast, SAN closed the switch on temporal
attention and opened the one on spatial attention. In the
temporal domain of SAN, we aggregated the features of frames
by average pooling. We calculated the average of spatial-
temporal attention scores along the temporal domain as the
spatial attention scores. Then we weighted the distances of
body parts by them.

STAL: STAL combined the TAN and SAN by opening
all attention modules. We aggregated the features of different
frames with temporal attention scores and calculate the final
distance by the spatial attention scores.

Comparison and Analysis: Fig. 5 summarizes the perfor-
mances of the different variants of the proposed method. It is
easy to draw the following conclusions from the rank CMC
curves of different variants.

1. By comparing Baseline and TAN, we concluded that the
temporal attention model learns how discriminative of different
frames in a video. By excluding noise frames in matching, we
obtained more robust feature aggregation than average pooling.

2. The improvement between SAN and Baseline demon-
strated that the spatial attention models have explored the
salient body parts for each person.

3. When combining the TAN and SAN in a joint STAL
model, we further improved the performance. It indicates
that the components of the proposed method not only works
separately but also can be combined to boost performance.

2) Evaluations of Each Feature Branch: We also designed
an ablation experiment to analyze the contributions of each
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Baseline, Rank1 = 0.77
TAN, Rank1 = 0.78
SAN, Rank1 = 0.80
STAL, Rank1 = 0.83

Fig. 5. Performance of variants of proposed method on the iLIDS-VID
dataset. TAN refers to temporal attention network and SAN represents the
network which only considers spatial attention. Finally STAL stands for joint
spatial-temporal attention network.

feature branch. First, we independently evaluated two basic
feature branches including the pure global feature branch
(PGB) and the pure local feature branch (PLB). In these
two evaluations, only single feature branch is applied in both
training and testing stages. Then we jointly trained both two
feature branches and test each branch respectively, the global
branch (GB) or the local branch (LB). To investigate the
contribution of designed residual attention model (RAN), we
also conducted an experiment where only the residual attention
model is ablated.

We compared the CMC curves of the feature-branch abla-
tion experiments on ILIDS-VID dataset in Fig. 6. First, the
comparison between PGB and GB and the one between PLB
and LB show that joint learning of global feature and local
feature boosts the robustness of feature representation. When
we learn the global feature, the local body parts learning
provide structural information and local attention to improve
feature representation. Meanwhile, the global feature learning
process enhances the semantic expression ability of feature
map, which assists to detect local body parts. Second, the
performance of complete STAL advances than other single
branch baselines, which indicates that STAL learns the com-
plementary representation information between global feature
and local feature. Third, the ablation experiment of residual
attention model shows the important contribution of RAN in
the proposed STAL method.

3) Evaluations of Each Local Part: To explore the salient
spatial parts of person images, we segmented a whole person
image into different body parts and learned corresponding rep-
resentations and attention scores. In experiments, we naturally
segmented images into the head part, torso part, right arm part,
left arm part, right leg part and left leg part. We conducted
experimental analysis on the iLIDS-VID dataset to show the
efficiencies of different local parts. Specifically, to avoid the
interference of global branch, we only tested the local branch
of STAL. In the testing stage, we extracted local features of
different body parts and respectively calculated the Euclidean
distance to measure similarity.
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Fig. 6. CMC curves of proposed algorithm with different body parts on the
iLIDS-VID dataset.
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Fig. 7. CMC curves of proposed algorithm with different body parts on the
iLIDS-VID dataset.

Fig. 7 illustrates the CMC curves of different body parts. We
observe that the performance of the torso part is greater than
limbs. The reason is that the torso part is more discriminative
for person ReID on the iLIDS-VID dataset. In addition, we
improve performance by combining different body parts with
attention scores, since these six body parts have structured
complementary information.

D. Parameters Analysis

In this section, we conducted experimental analysis on
the iLIDS-VID dataset to investigate the effect of parameter
settings on proposed STAL: the sequence length, the rate in
the fusion of global feature and local feature, margins ml,mg

in Eq 4 and the feature embedding size.
1) Analysis of Fusion Rate: In our STAL model, we extract

both global features and local body-part features to represent
person video. When testing, we calculate the distance matrices
of global and local features independently and fuse them
with a balance rate as the final similarity metric. The rate
is set empirically to improve the performance. Therefore, we
investigated a few different fusion rates, which range from 0
to 1 with an interval of 0.1. The result performances on the
iLIDS-VID dataset with different fusion rates are illustrated
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Fig. 8. Rank 1 accuracy on iLIDS-VID dataset with different fusion rates.

in Fig. 8. Obviously, the fusion strategy improves the perfor-
mance significantly, since the global semantic representation
and local body-part descriptor are complementary. Our model
achieves the optimal rank 1 accuracy when the fusion rate is
set to 0.3.

2) Analysis of Embedding Size: The embedding size of
feature representation model is also crucial to the ReID
problem. As shown in Fig. 9, we evaluated effects of different
embedding sizes:{128,256,512,1024,2048} on the iLIDS-VID
dataset. For the convenience of analysis, we independently
investigated the global embedding size and local embedding
size. For example, we fixed the local embedding size as 1024
when evaluating the effects of global embedding sizes, and
vice versa. The performance constantly increases as embed-
ding size increasing to 1024. While the growth is stagnant
when the embedding size increases from 1024 to 2048. The
reason may be that feature parameters are saturated when
embedding size is in excess of 1024. The effects of both
global embedding size and local embedding size are roughly
consistency. The global embedding size is slightly sensitive
than the local one. Finally, we choose the 1024 embedding
size of both global and local feature in our experiments.
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Fig. 9. Rank 1 accuracy on iLIDS-VID dataset with different embedding
sizes.
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Fig. 10. Rank 1 accuracy on iLIDS-VID dataset with different margins in
triplet loss.

3) Analysis of Margin: We trained proposed STAL with
triplet loss, softmax loss, and consistency constraint as Eq. 3.
The margins ml,mg in the triplet loss are crucial hyper-
parameters which affect the generalization of the model by
regularization. In this experiment, we investigated how re-
identification accuracy varies depending on the margins of
global distance and local distance. Evaluations were performed
on the iLIDS-VID dataset with the margins varied from 0.4 to
2 with a 0.4 interval. When testing the global margin, the local
margin was fixed at 0.8; while the global margin was set to
1.2 for evaluating the local margin. Fig. 10 illustrates the rank
1 accuracies on the iLIDS-VID dataset with different margins.
We observe that the performance first increases corresponding
to the margin and reaches the optimal around 1. Then, with
the growth of margin, the performance drops gradually.

4) Analysis of Sequence Length: In this subsection, we
investigated how the performance of the proposed method
changes when the lengths of both probe and gallery sequences
are varied. We trained the model on iLIDS-VID dataset as
the original setting which selects 8 frames randomly in a
video. During testing, we changed the lengths of both probe
and gallery sequences from 1 to 128 in steps corresponding

Fig. 11. Rank 1 CMC performance on iLIDS-VID dataset with different
lengths of both probe and gallery sequences.

TABLE VI
RANK CMC ACCURACY OF CROSS-DATASET TESTING

Datasets iLIDS-VID/PRID-2011
Rank@R R=1 R=5 R=10 R=20
CNN+RNN [15] 28.0 57.0 69.0 81.0
QAN [48] 34.0 61.3 74.0 83.1
ASTPN [62] 30.0 58.0 71.0 85.0
RQEN [63] 61.8 82.6 90.4 96.1
STAL 63.7 84.0 92.8 98.1

with the powers-of-two and give the reference which uses all
frames. For instance, we fixed the sequence length in L. If the
real length of a video is greater than L, we randomly selected
L frames as the testing sequence; otherwise, we used the whole
sequence and randomly sampled other frames to complement
the L length. Different from the RNN-based method, we
selected random frames instead of the first or last L frames
of the consecutive sequence, since frames of a video with
different poses and background have independent assuming in
our model.

Results are reported in Fig 11 as a heat-map which shows
the Rank 1 CMC accuracies with varied probe and gallery
sequence lengths. It is easy to observe that the re-identification
accuracy improves with the increase of the input sequence
lengths of both probe and gallery videos. The detailed relations
about accuracies and sequence lengths are divided into three
stages: 1) the improvement of increasing frames is dramatic
when the lengths of sequence L ≤ 4; 2) the improvement is
slight with the range of sequence lengths in 4 < L ≤ 64;
and 3) the performance tends to be stable when the sequence
lengths L > 64. It is understandable since the effectiveness
of out temporal attention model is limited with few selected
frames. It is difficult to select clear and informative frames and
obtain robust representation when all frames are noise ones. In
contrast, when the sampled frames have enough discriminative
information, our STAL method aggregates the robust and
discriminative representation with the attention-aware salience
learning.

E. Robustness Analysis

In this section, we evaluated the robustness and generaliza-
tion of our STAL method including cross-dataset evaluation
and robustness evaluation about occlusions.

1) Robustness of Cross-Dataset Evaluation : In real surveil-
lance systems, time and monetary cost are prohibitive to label
overwhelming amount of data. To guide the training of model,
we do need the labeled training data of the existing dataset.
However, most of the existing experiments split the dataset
into training and testing sets to evaluate the method. It may
not be applicable in the real-world applications if the model
learned by training data is over-fitting on the test data.

To evaluate the effects of the proposed method applied to a
real-world surveillance system, we conducted the cross-dataset
testing [15], where the model is trained by the iLIDS-VID
dataset and tested on the PRID-2011 dataset. We also repeated
the experiments 10 times and calculate the average accuracy.

Table VI summarizes the performances of the state-of-
the-art methods in the cross-dataset testing, including CN-
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Fig. 12. Spatial-temporal attention scores of person samples in iLIDS-VID dataset. The top two rows and the bottom two rows show the attention scores of
the same person video in two cameras, respectively. For a pedestrian video, we segment the person into six body parts and select four frames temporally.

Fig. 13. Samples of polluted iLIDS-VID datasets with random occlusions.
The images of original dataset are occluded by a random 25× 25 black box
which simulates the natural occlusions.

N+RNN [15], QAN [48], ASTPN [62] and RQEN [63].
Compared with the single dataset testing, the performances
of all methods on cross-dataset testing drop substantially. Our
29.7% improvement on Rank 1 than QAN [48] demonstrates
the superior generalization ability of the proposed method.
Compared with CNN+RNN [15] and ASTPN [62], proposed
approach obtains a dramatical improvement with the more
robust person representation and spatial-temporal attention
model. Compared with RQEN, 2% improvement indicates
the relation between temporal and spatial domains has great
generalization ability.

2) Robustness about Occlusions: In the surveillance sys-
tems of the real world, pedestrians may be fully occluded,
especially in the crowded environment. To intuitively evaluate
the robustness of the proposed method in case of occlusions
and background noise, we manually designed an experiment
with a “polluted” dataset by a random black box. As shown in
Fig. 13, we applied a 25×25 pixels black box in each frame of
iLIDS-VID datasets to simulate the occlusions and background
noise. When the black box is on the pedestrian, it brings in

occlusion distractions. It also changes the image background
when the black box is in the background. Both training and
testing sets are processed with simulated occlusions in the
experiments.

We conducted the occlusion robustness evaluation on the
STAL and other baseline methods, QAN [48], RQEN [63]
and the baseline CNN method. As shown in Table VII, our
method outperforms the baseline method by 8% on Rank-1
accuracy, which shows the robustness of proposed method to
occlusions and background noise. Our STAL method obtains
a competitive accuracy on the “polluted” dataset, since the
spatial attention module effectively spots the occluded parts
and assigns them low attention scores to diminish the negative
impact for the person matching.

F. Visualization of The Attention Model

In this section, we provided a visualization of how attention
scores vary in both spatial and temporal domains correspond-
ing to influences of the environment. As shown in Fig. 12,
we depicted the spatial-temporal attention scores generated by

TABLE VII
RANK CMC ACCURACY OF ROBUSTNESS EVALUATION ABOUT

OCCLUSIONS

Datasets Polluted iLIDS-VID
Rank@R R=1 R=5 R=10 R=20
Baseline 70.2 89.9 93.5 97.9
RQEN [63] 70.7 87.7 92.6 96.2
QAN [48] 61.7 80.2 90.5 95.5
ASTPN [62] 55.2 78.7 89.8 94.1
STAL 78.4 96.2 98.7 99.6
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the proposed STAL method of 4 testing persons in the iLIDS-
VID dataset. For each person video, we sampled 4 frames in
both cameras and calculated 6 spatial attention scores for each
frame. We observe that the attention scores reliably reflect the
qualities of different body parts in the frames. As shown in the
first frame of person 2 in camera A, attention scores decrease
when occlusions occur in corresponding parts. The scores of
person 1 and person 3 in camera B respectively illustrate
that attention scores are negatively correlated with the area of
background noise and occlusions. Considering the temporal
attention scores only, we observe that the less cluttered frame
have higher scores, for example, the last frames of person 2
and person 3 in camera B get the highest scores.

V. CONCLUSIONS

In this work, we have proposed a STAL method which
learns the attention on spatial and temporal dimensions to
select informative frames and seek the salient parts to attend in
person ReID. We develop an end-to-end network to integrate
the global feature on person body and local spatial-temporal
feature on discriminative body parts. We evaluated our method
on three public video person re-identification datasets and
demonstrated consistent improvement of our proposed ap-
proach over state-of-the-art methods. Our proposed method
assumes that frames in a video are independent, rather than an
ordered frame sequence, which neglects the temporal context
like gait or motion. In the future, we will try to learn the
context-aware temporal attention, which is more robust in the
pedestrian video.
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