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Learning Recurrent 3D Attention for Video-Based
Person Re-identification
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Abstract—In this paper, we propose to learn recurrent 3D at-
tention (A3D) for video-based person re-identification. Attention
model plays a key role in both spatial and temporal domains
for video representation. Most existing methods apply spatial
attention model to extract feature from a single image and
aggregate image features with attentive temporal pooling or RNN.
However, the inherent consistencies and correlations between
spatial and temporal clues are not leveraged. Our A3D method
aims to utilize the joint constraints of temporal and spatial
attentions to enhance the robustness of attention model. Towards
this goal, we treat the pedestrian video as a unified 3D bin where
the temporal domain is denoted as an additional dimension.
Then we develop an attention agent to iteratively select the
locations of the salient spatial-temporal parts in the 3D bin.
In addition, we formulate our sequential 3D attention learning
as a Markov Decision Process and train the representation
network and attention detector with the policy gradient method
in an end-to-end manner. We evaluate the proposed method
on three challenging datasets including iLIDS-VID, PRID-2011
and the large-scale MARS dataset, and consistently improve the
performance in comparison with the state-of-the-art methods.

Index Terms—Person re-identification, 3D attention, reinforce-
ment learning, recurrent model.

I. INTRODUCTION

Person re-identification (ReID) aims to identify an indi-
vidual across multiple non-overlapping camera views from a
large set of candidates, with great potential in surveillance
applications [1]. It is such an intriguing vision problem that
the complicated inter-camera variances present all kinds of
challenges, such as pose variations, illumination changes,
partial occlusions, and clutter background.

In terms of the basic unit in the matching process, approach-
es for ReID are mainly divided into two categories: image-
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Fig. 1. Difference between conventional methods and our method. (a) shows
that conventional attention methods explore the spatial attention region in
each frame independently, which ignore the spatial-temporal consistency in
the video. The learned attention regions of the consecutive frames are usually
misaligned. (b) shows that the proposed A3D method jointly locates attentive
3D bins in a video clip, in which spatial-temporal consistency enhances the
robustness of an attention detector. The temporal cues are applied to refine
the misaligned attention regions as a constraint. (Best viewed in color)

based methods [2]–[14] and video-based ones [15]–[24]. In
this work, we investigate person re-identification with video
sequences, which is a more practical setting than with still
images, and gains increasing research interests recently [25]–
[33]. In fact, surveillance videos with pedestrian are the orig-
inal data for image-based person ReID before pre-processing.
These person videos preserve abundant and potentially com-
plementary spatial-temporal characteristics of pedestrian, from
different poses and view angles. Recently, attention models
have been successfully applied to video-based person ReID
to explore salient regions [27], [34], select key frames [33],
[35] and learn discriminative representations [26], [36]. Most
existing video-based person ReID methods apply a spatial
attention model to explore salient regions in a single image and
employ temporal pooling with attention to aggregate features
from multiple images. However, these methods capture spatial
and temporal attentions separately, which ignore the inherent
correlations between spatial and temporal clues.

Most pedestrian videos are located by person trackers
or manual refinement, where temporal and spatial cues are
interdependent. Spatial salient regions or occlusions move
smoothly in the consecutive frames, which leads to the spatial-
temporal consistency in the person video. While the person
across frames may be misaligned, the locations of salient
regions (occlusions) will not change dramatically due to the
feasible moving speed of pedestrians and dense sampling
of frames. For example, as shown in Fig. 1, the spatial



2

salient regions of consecutive frames usually appear in the
similar location. Learning the attention model for each frame
individually in the video suffers from the position bias in
the consecutive frames. Visual attention may be unreliable
since the networks that generate them are often trained in
a weakly-supervised manner. Therefore, the prior knowledge
about spatial-temporal consistency in the video provides nat-
ural constraints for weakly-supervised attention learning.

Motivated by the observations that temporal and spa-
tial attentions are inter-related, we propose a recurren-
t 3-dimensional attentive reinforcement learning framework,
which treats the pedestrian video as a unified 3D bin and
locates attentive 3D bins in it. In our A3D model, except
for the key-frame selection and additional discriminative gait
feature, the temporal information in the pedestrian video is
applied to refine spatial attention as a constraint. With the 3D
constraints, the temporal attention will focus on a consecutive
video clip instead of discrete key frames. Specifically, we
apply a two-stream network to extract static perceptual and
dynamic motion information and obtain a global feature map.
Then we propose a 3D attention detector, which selects salient
bins in the feature maps and extracts local features. Inspired
by the human vision system attending multiple salient objects
sequentially, we employ the recurrent model in the attention
generator to capture a sequence of salient 3D bins.

The sequential selection of 3D bins is a non-differentiable
process, since the attention selection action lacks supervision
signal. This motivates us to formulate spotting the attention 3D
bins as a Markov Decision Process which is well optimized by
reinforcement learning (RL) algorithms. In this formulation,
the action is searching the center points of salient bins in
the video, the state is the spatial-temporal features of the
current bin and the hidden state from the previous iterations,
and the reward measures the similarity rank and recognition
accuracy by the final features of video clips. The RL algorithm
optimizes each step of attention selection by setting explicit
rewards towards person matching, rather than indirect weak
supervision with classification loss, leading to a principled
sequential attention learning. Besides, The RNN model is
applied to replace the single attention bin with multiple
ones for more robust representation learning. Similar with
the process human vision system attending multiple salient
objects sequentially, each step of RNN model indicts a glimpse
of the human vision system. Experimental results on three
video datasets including PRID-2011 [37], iLIDS-VID [15] and
MARS [19] demonstrate consistent improvement and superior
cross-dataset generalization ability of our method.

We summarize three key contributions of our work as
follows:

1) We propose a recurrent 3-dimensional attentive (A3D)
reinforcement learning framework to jointly attend to the
salient parts of pedestrian videos on both temporal and spatial
domains. We treat the pedestrian video as a unified 3D bin
and seek a sequence of salient local bins, where the temporal
attention and spatial attention are constrained in each local 3D
bin.

2) We formulate the sequential selection of 3D video bins
as a Markov Decision Process and design a reinforcement

learning (RL) algorithm to end-to-end optimize our A3D
attention model.

3) We conduct extensive experiments on three challenging
video datasets including PRID-2011 [37], iLIDS-VID [15] and
MARS [19] to demonstrate the efficacy of our A3D method.
The results show that the proposed method outperforms other
state-of-the-art methods.

II. RELATED WORK

Existing ReID work cab be roughly divided into two cat-
egories: image-based person ReID and video-based person
ReID. In this section, we first briefly review both image-based
and video-based person ReID. Then, we will introduce two
types of works: attention model and reinforcement learning,
which are related to our approach.

A. Image-based Person Re-identification

Image-based person ReID systems [5], [7], [8], [25], [38]–
[45] roughly consist of two components: robust representa-
tion learning and discriminative metric learning. Conventional
representation learning methods [5], [39], [46], [47] try to
extract a robust feature which is invariant to environmental and
viewpoint changes. For example, LOMO [5] and GOG [39]
are hand-crafted descriptors that combine the color and texture
features. Salience match [46] learns image representation by
seeking pairwise salient patch. Besides robust representation
learning, metric learning [5], [6], [8], [48]–[52] also has been
widely applied for person ReID. Previous methods [5], [49],
[53], [54] learn a discriminant subspace or an integrated metric
to emphasize inter-person distance and deemphasize intra-
person distance. To learn the nonlinear relation of persons, the
kernel-based metric learning methods [6], [55] are proposed,
which project the feature vector from low dimension space to
high dimension Hilbert space. Recently, deep neural networks
have been applied to person ReID successfully to jointly
learn feature representation and similarity within one network.
In terms of loss functions, the deep learning based person
ReID methods are categorized into three areas: verification,
classification, and retrieval. Verification based works [9], [10],
[56] apply the Siamese network to extract deep features and
use the binary verification accuracy as supervisory signal.
Classification based methods formulate person ReID as a clas-
sification problem and learn the deep discriminative features
with the Softmax loss. For retrieval, a typical work is triplet
loss [1], [12], [40], [45], which learns robust embeddings by
preserving the rank relationship with a margin among each
triplet of person samples.

B. Video-based Person Re-identification

Video sequences provide abundant person samples and their
possible correspondences in consecutive frames. Thus, video-
based person ReID methods [15]–[26] devote great efforts to
extract robust spatio-temporal features to leverage the motion
clues or aggregate image-based features along the time axis.
To effectively leverage motion clues in the spatio-temporal
feature learning, many previous methods [16], [17], [21], [57]
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employ the HOG3D [58] method on person videos as spatio-
temporal features; Liu et al. [18] segment a video into a
series of spatial-temporal body-action units and apply fisher
vector to concatenate them in the final representation; and
Chen et al. [28] and Liu et al. [30] employ optical flow to
extract the motion information and capture dynamic gist. Then,
to aggregate image-based features temporally, RFANet [59]
employs a long short term memory (LSTM) network to
capture contextual dependencies between the frames; while
some recent works [22], [26] apply a temporal pooling layer
following the recurrent model (RNN or LSTM) to capture
long-term correlation in the sequence; Liu et al. [35], Xu et
al. [36], and Li et al. [27] further improve the original temporal
pooling by an attention model to select key frames adaptively.

C. Attention Model

Attention model [60] naturally imitates human perception
to concentrate on what we are interested in. Recently, it
gains great success in various fields, such as natural language
processing (NLP), image understanding, and video analysis.
Attention model also attracts increasing research interests in
person ReID both in the spatial and temporal domains. In
spatial domain, some works [40], [61]–[63] attempt to locate
the informative spatial regions by generating attentive masks
on the person image. Attention model is also employed to
identify informative samples along the time axis. For exam-
ple, QAN [35] designs a quality-aware network to estimate
the image quality scores and integrates frame-wise features
weighted by these scores. In addition, some works jointly
learn the spatial and temporal attentions for robust feature
learning. Xu et al. [36] design a pooling layer to jointly
select spatial regions and temporal informative frames. Li et
al. [27] weigh the features from different spatial regions and
temporal frames by learning spatial-temporal quality scores.
Different from these attention methods aggregating features
with attentive weights, we directly detect 3D salient bins in
the video, which adequately satisfy the constraints between
spatial and temporal attentions.

D. Reinforcement Learning

Reinforcement learning (RL) aims to guide an agent to make
optimal decisions by interacting with dynamic environment,
which has been successfully applied in the vision tasks: object
detection, visual tracking, and video analysis. Recently, RL has
been adopted for person re-identification to generate spatial or
temporal attention. For example, Zhang et al. [64] develop an
agent to decide whether extra image pairs are needed, which
achieves a reasonable trade-off between speed and accuracy.
In contrast, SPL [65] employ deep RL to discard confounding
frames from video. Xu et al. [34] learn a series of deformation
actions of the bounding box to select the attention region of
each person image. Some related works [60], [66] consider the
spatial attention of image as the sequential decision process
of an attentive agent interacting with a visual environment.
In this paper, we extend this work in the video to locate 3D
salient bins, which jointly learns both spatial and temporal
attentions. Meanwhile, we address the problems about a huge

action space, high computational cost and temporal importance
bias in the video.

III. APPROACH

In this section, we propose a recurrent 3D attentive (A3D)
reinforcement learning framework that treats the pedestrian
video as a unified 3D bin and develop an attention agent
to iteratively select locations of the salient spatial-temporal
parts. We first present the overall architecture of the proposed
method and then explain our recurrent 3D attention model
in details. Finally, we explain the optimization procedure and
implementation details of our A3D method.

A. Overall Procedure
Fig. 2 illustrates the overall procedure of the proposed

A3D method. Inspired by [67], we also propose a two-steam
representation network for video person ReID to better explore
the dynamic motion in the video sequence. Given a pedestrian
video X ∈ R3×L×H×W , where L is the number of video
frames and H × W is the spatial size of each frame, the
optical flows between adjacent video frames calculated by
Flownet [68] are denoted as F ∈ R2×L−1×H×W . To ensure
the video length consistent between the original RGB-based
video clip and generated optical flow sequence, we repeat
the last optical flow map as the temporal padding. Then, the
original RGB-based video clips and generated optical flow
maps are fed into the low-level ConvNet respectively to extract
perceptual and motion features. Different from the RGB-based
video, the first convolution layer of optical flow has two
channels, which consist of the vertical and horizontal channels.
While the dimension of output feature maps in the optical-flow
stream are the same as the RGB-based ones. In addition, we
merge the features from two streams by element-wise addition
and feed them into the following high-level ConvNet as:

g = Fg(Fimg(X)⊗Fflow(F )), (1)

where g ∈ RCg×Lg×Hg×Wg is the final global feature map.
Then we further employ an RNN-based 3D attention de-

tector to obtain salient bins and local discriminative features
iteratively. The input of our recurrent A3D attention model is
the global features maps g, and the outputs are a sequence
of local features extracted from different attention bins. It is
expressed as:

{f tl }t=1:T = α(g) : RLg×Cg×Hg×Wg 7→ RT×Cl , (2)

where, α denotes our A3D module, T is the number of
glimpses in the attention model, and f tl is the local feature
of tth attention glimpse. Meanwhile, we generate the global
feature fg using average pooling based on the global feature
maps g. In the end, we concatenate the global feature fg
and local feature sequence {f tl }t=1:T to obtain the final video
representation. To address the problem of limited computing
resource and varying video length, we slice the video into
multiple clips in both training and testing procedures. During
training, we randomly select video clips to train our network.
While in the testing procedure, we sequentially select clips of
one video with a fixed stride, and average these features as
the final video representation.
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Fig. 2. The network architecture of the proposed recurrent A3D framework. The feature representation module includes two streams: RGB video stream for
static perceptual features and optical flow stream for dynamic motion features. The two streams are merged by element-wise addition and fed in high-level
ConvNet to extract global features. The recurrent 3D attention module iteratively selects salient bins from video and extract local features by an RNN network.
The attention-based local features and global feature are connected as the final video representation. (Best viewed in color)

B. Recurrent 3D Attention Module

To jointly explore salient regions and key frames, we treat
the pedestrian video as a 3D bin and develop a recurrent
3D attentive agent to iteratively locate the coordinates of
informative spatial-temporal parts. This selection procedure of
attentive 3D bins is non-differentiable in the spatio-temporal
domain, which is hard to learn with back-propagation type of
training. We therefore formulate our recurrent A3D model as
a RL problem. The RL involves {S,A, T ,R} as the states,
actions, transitions and rewards. At tth iteration, our A3D
agent takes a state st ∈ S as the observation and predicts an
action at ∈ A, which indicates the location of salient bin. After
that, the state is updated by the state transition distribution
T (st+1|st, at). Until the maximum iteration is reached, the
agent repeats the attention prediction and generates the local
feature based on the selected salient bin. Finally, we integrate
the global feature and local features based on all glimpse as
the final feature of the video. Note that the relations between
learned attention bins are complementary with the equal level
but not sequentially refined. For example, the first attention
focuses on the salient bag of the person, while the next one
tends to focus another salient region, like the pants, rather
iteratively refine the location of the salient bag. To train the
agent to select appropriate actions, a reward rt ∈ R is fed back
from the environment, which evaluates selected attention bins
with the generated features. We will elaborate the definitions of
these states, actions, transitions, and rewards in the following.

States and Transitions: The state st of tth iteration in-
cludes two parts: the observation with current attention and
the information extracted from previous iterations. With the
current location generated by the last step, we extract the
local feature of the selected attention bin. To reduce the
computational cost of feature extraction, we crop our attention
bin from high-level feature maps g, instead of the original
input pedestrian video and optical flow. We share the param-
eters of most convolution layers when extracting the features

of different attention bins, which significantly improves the
efficiency during both training and test procedures. As shown
in Figure 3,we formulate the observation as

ot = Fo(g, at−1), (3)

where at−1 represents the selected action which indicates
attention location. On the other hand, the history of previous
iterations also provides a sensible clue to guide the agent to
make appropriate decisions. Therefore, we employ the hidden
state of last iteratively ht−1 in our state st to “remember” the
status of the past iterations. The supplement of history infor-
mation allows the agent to analyze the contextual information
among all selected attention bins. Finally, we formulate the
internal state by a hidden unit of the RNN, which contains both
the current observation and history information, as follows:

st = ht = Fh(ot, ht−1). (4)

In this process, the internal state st−1 transforms to st by the
selected action at−1. As shown in Figure 3, the hidden em-
bedding module Fh generates the current hidden embedding
with the local observation ot and last one ht−1.

Actions: In our A3D method, the actions of the agent are all
candidate attention bins over the high-level feature maps. The
size of an action pool is a crucial hyper-parameter that influ-
ences the convergence and performance in the RL. Compared
with the conventional image problem, pedestrian video always
has a lager action space. To reduce the number of actions,
instead of the original video data, we crop the salient bins
in the high-level feature maps. In addition, we fix the scales
of attention bins and only select the bins inside. For example,
when we fix the size of the attention bin as La×Ha×Wa, and
the global feature maps g ∈ RCg×Lg×Hg×Wg , we get the size
of the action pool as (Lg−La+1)(Hg−Ha+1)(Wg−Wa+1).
Given the state st, the action at of our A3D agent is denoted
as {at = (l, h, w)|0 ≤ l ≤ Lg − La, 0 ≤ h ≤ Hg −Ha, 0 ≤
w ≤ Wg −Wa}. To encourage more exploration of location
selection, at time step t, we stochastically select attention bins
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Fig. 3. The detail network architecture of the A3D attention learning process. The sequential attention learning is a Markov Decision Process formulated
by an RNN model. The RNN model consists of four modules: observation module Fo, hidden embedding module Fh, attention locating module Fa, and
classification module Fc. In tth step, the 3D attention predicted in last step at−1 and the high-level representation g are fed into observation module Fo to
get local observation ot. Then Fh generates hidden embedding ht with ot and the last hidden embedding ht−1. Attention locating module Fa predicts next
3D attention region with ht. Finally, all hidden embedding are fed into the classification module Fc as local features for identifying person and obtaining
rewards. (Best viewed in color)

over a Gaussian distribution which is parameterized by our
attention prediction network:

at ∼ N (at|µ = Fa(ht),Σ), (5)

where Fa(·) is the attention prediction network implemented
with a fully-connected layer. For example, when the agent
predicted a attention bin Fa(ht) in the training stage, the
policy explores a new attention bin from the neighborhood
and determines if it’s a better attention. While in the testing
stage, we directly use the predicted result (the expectation) as
the attention, which removes the exploration. The variance is
a fixed parameter which denotes the strength of exploration.
The lager variance indicts to encourage more exploration.
We set the variance as Σ = 0.03 in all experiments. To
avoid the mismatching with random attention initialization,
we uniformity initialize the first glimpse as the center of the
video clip and fill the initial hidden state with zeros.

Rewards: To guide the agent to make appropriate decisions,
we design a reward signal rt in each iteration, which reflects
our task objective. For the objective of video-based person
ReID, we take the recognition results as the reward of our
A3D model to help the agent to select salient 3D bins which
are beneficial to person matching. Formally, at tth iteration,
we take the internal state f tl = ht as the local features based
on last attention bins at−1. Meanwhile, we utilize an average
pooling layer on the global feature maps to generate the global
feature fg . As shown in Figure 3, we employ a classification
network to predict the identity of the given pedestrian sample,
whose input is the connection of both global feature and local
features:

pc = Fc(fg, f1l , . . . , fTl ), (6)

where pc denotes the predicted probabilities of identity classes.
Instead of only choosing the local feature of the last recurrent

unit, we utilize the features of all iterations as local features
to reduce sequential importance bias. Then we estimate the
prediction label lp of given pedestrian video clip by selecting
the maximum of pc. Suppose the ground-truth label is lg , we
define the reward at time step t as :

rt =

{
1 lg = lp, t = T

0 otherwise
. (7)

In fact, things encouraging the agent to select key 3D bins
can be employed as rewards. Then the goal of the agent is to
maximize the sum of discounted reward as:

R =

T∑
t=1

γt−1rt, (8)

where γ is the discount factor, which is set as 1 in our
experiments.

C. Optimization
During training, we learn the parameters of our A3D agent

by maximizing the received reward in the person ReID.
Following the REINFORCE [69], we define a policy as

P (at|st, θ) ∼ πθ(at|st), (9)

where θ indicates the parameters of our agent. The policy
π predicts a distribution over actions based on current state
with parameters θ. Then, we denote τ as a trail which
describes a sequence of past states and attentions, e.g. τ =
{s1, a1, . . . , sT , aT }. We calculate the likelihood probability
of the sequential decisions τ with the state transferring prob-
ability T and action selection probability π as:

P (τ |θ) =

T∏
t=1

T (st+1|st, at)πθ(at|st). (10)
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Under this distribution of trails, we define the objective
function with the maximization of expected reward as:

J(θ) = EP (τ |θ)

T∑
t=1

rt = EP (τ |θ)R. (11)

To optimize the policy network π, we maximize the expected
reward by repeatedly estimating the policy gradients with the
Monte Carlo method as:

∇J(θ) = EP (τ |θ)
[
∇θ logP (τ |θ)R

]
= EP (τ |θ)

[ T∑
t=1

∇θ log πθ(at|st)R
]

≈ 1

M

M∑
m=1

T∑
t=1

[
∇θ log πθ(a

m
t |smt )R

]
,

(12)

where m = 1, . . . ,M denotes the index of M episodes
sampled in the Monte Carlo method. Although the above
gradient estimator is simple and unbiased, it still suffers from
the high variance problem. Therefore, we introduce a baseline
to reduce the variance of our gradient estimation:

∇J(θ) ≈ 1

M

M∑
m=1

T∑
t=1

[∇θ log πθ(a
m
t |smt )(R− b)], (13)

where b is a baseline which is independent of the action.
By adding this baseline, we reduce the variance of gradient
estimation without changing the expectation of the original
gradient. Specifically, we employ the value function in the RL
as our baseline, which is implemented by a value network.

In addition, to assist the training of A3D agent and learn
discriminative video representation for person ReID, we add
a hybrid supervised signal for the re-identification objective.
The designed loss function consists of two parts: triplet loss
and classification loss. The first triplet loss function aims to
preserve the rank relationship among a triplet of pedestrian
videos. It is formulated as:

Ltri =
1

N

N∑
i=1

[
||fi − f+i ||

2
2 − ||fi − f−i ||

2
2 +m

]
+
, (14)

where
[
x
]
+

denotes the max function max(0, x), and
fi, f

+
i , f

−
i respectively denote as anchor sample, positive sam-

ple and negative sample in a triplet. m is a margin to enhance
the discriminative ability of learned features, which is set to
0.3 in the experiments. The other classification loss concerns
whether a given person is correctly identified. Specifically, we
employ a cross entropy loss as:

Lcls = − 1

N

N∑
i=1

C∑
c=1

yci log(pci ), (15)

where yci is the ground truth identify of ith person on the cth
class and pci indicates the predicted probability of our model.

D. Implementation Details

In our recurrent A3D reinforcement learning framework, the
model includes 7 networks {Fg,Fimg,Fflow,Fc,Fo,FhFa},
where the first three networks aim to extract global appearance

Algorithm 1 : The A3D method
Input: The high-level feature maps g of the sampled video

clip, the size of the 3D attention region La ×Ha ×Wa,
the glimpse number of the sequential attention model T .

Output: The parameters of observation module Fo, hidden
embedding module Fh, attention locating module Fa, and
classification module Fc.

1: Initialize the parameters of Fo,Fa,Fc, and Fh;
2: for t = 0, 1, 2, . . . , T do
3: if t = 0 then
4: Initial attention location a0 as the center: a0 =

(dLg−La

2 e, dHg−Ha

2 e, dWg−Wa

2 e)
5: Initial hidden state h0 with zeros h0 = 0
6: else if 1 ≤ t < T then
7: Obtain local observation ot with the feature map
g and the attention region of the last glimpse at−1 as (3)

8: Obtain hidden embedding ht with observation ot
and last hidden state ht−1 as (4)

9: Predict attention location at with hidden embed-
ding ht as (5)

10: else
11: Classify the identity of the person video as (6)
12: Obtain the rewards as (7) and (8)
13: Calculate the reinforcement learning gradients as

(13)
14: Calculate the hybrid supervised gradients as
∇(Ltri + Lcls)

15: Update the parameters of Fo,Fa,Fh, and Fc
16: end if
17: end for
18: return The parameters of Fo,Fa,Fc, and Fh

TABLE I
DETAILED STRUCTURE OF RGB IMAGE BRANCH Fimg .

name kernel stride output size
input 3× 256× 128
conv1 7× 7 2 64× 128× 64
maxpool1 3× 3 2 64× 64× 32

1× 1
{res1 img} 3× 3 × 3 1 256× 64× 32

1× 1

and motion features, and the others devote great efforts to
seek salient 3D bins in the video. The backbone network
architecture of feature representation model is ResNet50 [70].
We modify the basic network architecture to adapt to our
video-based person ReID task. First, to extract the motion
features of video, we add an independent optical flow stream
which consists of 10 convolution layers. In order to merge

TABLE II
DETAILED STRUCTURE OF OPTICAL FLOW BRANCH Fflow .

name kernel stride output size
input 2× 256× 128
conv1 7× 7 2 64× 128× 64
maxpool 3× 3 2 64× 64× 32

1× 1
{res1 flow} 3× 3 × 3 1 256× 64× 32

1× 1
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TABLE III
DETAILED STRUCTURE OF THE HIGH-LEVEL CONVNET Fg .

name kernel stride output size
input 256× 64× 32

1× 1
{res2} 3× 3 × 6 2 512× 32× 16

1× 1
1× 1

{res3} 3× 3 × 4 2 1024× 16× 8
1× 1
1× 1

{res4} 3× 3 × 3 1 2048× 16× 8
1× 1

TABLE IV
DETAILS OF THE RECURRENT 3D ATTENTION MODEL.

name input size output size
Fo

input feature 2048× 8× 16× 8
input att 3× 1
pool feature 2048× 4× 6× 3 2048× 1
fc1 feature 2048× 1 128× 1
fc1 att 3× 1 128× 1
fc2 feature 128× 1 256× 1
fc2 att 128× 1 256× 1
addtion {256× 1} × 2 256× 1

Fh

fc i2h 256× 1 256× 1
fc h2h 256× 1 256× 1

Fa

fc att 256× 1 3× 1
Fc

fc cls 2048 + 256× T number of classes

the optical flow stream network with the original RGB-based
network by an element-wise addition, we apply the same
network structures of two streams except for the input shape.
Then, in order to locate the attention bins accurately from
global feature maps, we expand the size of feature map by
applying a convolution layer with stride = 1, instead of
original stride = 2 convolution layer in ResNet50. Fc,Fo,Fh
are implemented by fully-connected layers in the RNN model,
whose hidden layers are 256 dimensions.

All CNN models in this work are pre-trained on ImageNet
and fine-tuned with video person re-identification datasets. In
the training stage, e.g., the iLIDS-VID and PRID-2011 dataset-
s, we train our model on a single GTX 1080 Ti GPU machine
for 500 epochs by Adam optimizer. The initial learning rate is
0.0002 and reduces by half with each 60 epochs. We randomly
select 16 video clips from 4 persons in a batch, where each clip
consists of 6 frames (for MARS, we train the model on 2 GPUs
for 800 epochs with 48 clips from 12 persons in a batch).
For the inputs of the original RGB-based video data and the
optical-flow data, we apply randomly mirror and erase as data
augmentation and resize them to 256 × 128. In the testing
stage, we choose the Euclidean distance as the metric and
calculate the similarities between probe and gallery samples.
We sequentially extract the features of clips and average these
features as the final video representation, where clips in the
testing stage also include 6 frames and the stride is set to 0.

E. Network Architectures

In this subsection, we introduce the structures of our back-
bone network and attention model in the detail. First, we

TABLE V
THE BASIC STATISTICS OF ALL DATASETS IN THE EXPERIMENTS.

Datasets PRID-2011 iLIDS-VID MARS
Identities 200 300 1261
Tracklets 400 600 21K
Cameras 2 2 6
Images 42K 44K 1.1M
Crop Size 128× 64 Vary 256× 128
Label Method Hand Hand DPM+GMMCP
Splits Random Random Fixed
Matching Closed-Set Closed-Set Open-Set
Evaluation CMC CMC CMC & mAP

describe the base model which extracts the global appearance
and motion features with CNNs, including the image branch
Fimg , optical flow branch Fflow, and high-level ConvNet Fg .
As shown in Tables I-III, we list the kernel size, stride and
output size of each layer. We employ two CNN branches to
respectively capture the appearance and motion information
and fuse them by element-wise addition. We feed the fused
features into the high-level ConvNet Fg to extract the global
features and apply an average pooling layer to aggregate the
features from all frames as the video representation. The
backbone network is based on the ResNet50 [70]. Different
with original ResNet50, we add an independent branch to
capture the gait clues and replace the original stride = 2
in the res4 block with stride = 1 to expand the resolution of
feature maps.

Second, we describe the details of our recurrent 3D attention
model. Human vision system generally attends to multiple
salient objects one by one. This inspires us to employ the
RNN as the basic framework to sequentially capture salient
local clues in a person video. Different from common usages
of RNN only in the temporal domain, we adopt the RNN to
model the sequential decision process of spotting 3D attention
locations. We split the RNN cell into 4 modules including Fo,
Fh, Fa, and Fc. We show the network structure in Figure 3
and illuminate the network details in Table IV. The inputs
of the attention model consist of the global feature maps
and attention coordinates. The Fo extracts the local attentive
features and feeds them into Fh. Fh takes the previous hidden
state and current local features as input to learn the current
state. Fa predicts the next attention location with a fully
connected layer based on the current state. Finally, Fc uses
both local and global features for person classification. T in
Table IV denotes the number of steps in the recurrent model.

IV. EXPERIMENTS

We evaluated our method on three public pedestrian video
datasets: iLIDS-VID [15], PRID-2011 [37], and MARS [19].
We compared the proposed method with other state-of-the-art
approaches, and conducted ablation experiments and parame-
ters analysis to investigate the effectiveness and robustness of
the proposed A3D model.

A. Experimental Settings

Datasets: The detailed statistics of all datasets are presented
in Table V. The iLIDS-VID dataset [15] contains 600 videos
of 300 subjects, which have variable numbers of frames from
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Fig. 4. Samples of iLIDS-VID, PRID-2011 and MARS datasets. The left part shows the video from PRID-2011, the middle one is sampled from iLIDS-VID,
and the right part is the pedestrian samples from MARS. Each part consists of two individuals under different camera views, and we select 6 frames for each
person video.

23 to 193 with an average of 73. As shown in Figure 4, the
videos in iLIDS-VID dataset are captured in a crowded airport
arrival hall with cluttered background and partial occlusion.
The PRID-2011 dataset [37] consists of 385 persons in camera
A and 749 persons in camera B. 400 videos of 200 pedestrians
appear in both cameras. Following [15], we selected videos
of 178 identities with more than 27 frames1 in the experiment.
As shown in Figure 4, the main challenge of the PRID-2011
dataset is illumination variance across two cameras views.
MARS [19] is the largest video-based person ReID dataset
with 1261 persons and around 20000 video sequences. These
sequences are captured by 6 cameras at most and 2 cameras
at least, from which each identity has 13.2 sequences on
average. The bounding boxes in MARS are generated by a
DPM detector [71] and a GMMCP tracker [72], instead of
the hand-drawn way. As shown in Figure 4, the incomplete
frames and misalignment across different video clips due to
the low-quality detector and tracker are the main challenges
of the MARS dataset. Although the person videos are noisy
and misaligned, we find that the locations of salient regions
(occlusions) will not change much in the datasets, which
motivates the proposed A3D model.

Experimental Setup: We followed the protocol of [15] for
PRID-2011 and iLIDS-VID datasets. We repeated experiments
10 times and calculated the average accuracy by splitting the
dataset into equal-sized training and testing sets. To avoid the
noise from dataset splitting and make sure a fair evaluation,
we selected the identical 10 splits in [15], instead of random
splits. For MARS dataset, we followed the experimental setup
in [19], which uses 625 persons for training and the others for
testing. We applied cumulative matching characteristic (CMC)
curve and mean Average Precision (mAP) as the evaluation

1In PRID-2011, these 178 identities do have more than 27 frames, instead
of reported 21 frames

metric. CMC curves record the true matching within the top
n ranks, while mAP considers precision and recall to evaluate
the overall performance of methods.

B. Comparison with the State-of-the-Art Methods
We compared the proposed approach with other state-

of-the-art methods which include conventional representa-
tion learning and metric learning methods, such as AF-
DA [73], DVDL [17], mvRMLLC+ST+Alignment [23],
STFV3D+KISSME [18], eSDC+MSSDALF+DVR [57], T-
DL [21], AvgTAPR [24], LOMO+KISSME+SRID [74], LO-
MO+LMKDCCA [31]; deep learning based methods in-
cluding CNN+RNN [75], CNN+XQDA [19], AMOC [30],
FANet+RSVM [59], DeepRCN+KISSME [76], BRNN [77]
and TRL [32]; and attention-based methods such as
TAM+SRM [26], SDM [64], QAN [35], ASTPN [36],
DSAN [29], SPL [65], DRSTA [27], CSSA+CASE [28],
RQEN [78], STAL [33]. In addition, we also compare our A3D
approach with two methods which also leverage reinforcement
learning for video based person ReID problem, i.e. SDM [64]
and SPL [65].

Table VI illustrates the performance of our A3D approach
and most existing video-based person ReID approaches on
iLIDS-VID, PRID-2011, and MARS datasets. The top group
of Table VI shows results of methods which directly learn
video representation without attention mechanism. While the
bottom group shows the performance of deep learning methods
with attention model on the temporal or spatial domain. We
observe that the proposed A3D method consistently improves
over all comparing methods substantially on the three bench-
marks. For iLIDS-VID and PRID-2011 datasets, we improve
the second best method by 2.5% and 2.1% respectively on the
Rank-1 accuracy. While for large-scale MARS dataset, we ob-
tain the comparable Rank-1 accuracy with CSSA+CASE [28],
while achieve 3.7% improvement on the mAP metric.
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TABLE VI
COMPARISON WITH THE STATE-OF-THE-ART PERSON RE-IDENTIFICATION METHODS ON THE ILIDS-VID, PRID-2011 AND MARS DATASETS.

Datasets iLIDS-VID PRID-2011 MARS
Rank@R R=1 R=5 R=10 R=20 R=1 R=5 R=10 R=20 R=1 R=5 mAP
AFDA [73] 37.5 62.7 73.0 81.8 43.0 72.7 84.6 91.9 - - -
DVDL [17] 25.9 48.2 57.3 68.9 40.6 69.7 77.8 85.6 - - -
mvRMLLC+ST+Alignment [23] 69.1 89.9 96.4 98.5 66.8 91.3 96.2 98.8 - - -
STFV3D+KISSME [18] 44.3 71.7 83.7 91.7 62.5 83.6 89.9 92.0 - - -
DynFV+LDFV [25] 28.8 55.0 70.6 82.0 43.6 69.0 79.4 92.7 - - -
eSDC+MSSDALF+DVR [57] 41.3 63.5 72.7 83.1 48.3 74.9 87.3 94.4 - - -
TDL [21] 56.3 87.6 95.6 98.3 56.7 80.0 87.6 93.3 - - -
AvgTAPR [24] 55.0 87.5 93.8 97.2 68.6 94.6 97.4 98.9 - - -
LOMO+KISSME+SRID [74] 65.5 85.4 91.3 95.7 83.0 95.3 97.5 99.3 - - -
LOMO+LMKDCCA [31] 73.3 90.5 94.7 98.1 86.4 97.5 99.6 100 - - -
CNN+RNN [22] 58.0 84.0 91.0 96.0 70.0 90.0 95.0 97.0 56.0 69.0 -
CNN+XQDA [19] 54.1 80.7 88.0 95.4 77.2 93.1 95.7 99.1 65.3 82.0 47.6
RFANet+RSVM [59] 49.3 76.8 85.3 90.0 58.2 85.8 93.4 97.9 - - -
DeepRCN+KISSME [76] 46.1 76.8 89.7 95.6 69.0 88.4 93.2 96.4 - - -
AMOC+ EpicFlow [30] 68.7 94.3 98.3 99.3 83.7 98.3 99.4 100 68.3 81.4 52.9
BRNN [77] 55.3 85.0 91.7 95.1 72.8 92.0 95.1 97.6 - - -
TRL [32] 57.7 81.7 - 94.1 87.8 97.4 - 99.3 80.5 91.8 69.1
TAM+SRM [26] 55.2 86.5 - 97.0 79.4 94.4 - 99.3 70.6 90.0 50.7
QAN [35] 68.0 86.6 95.4 97.4 90.3 98.2 99.3 100 73.7 84.9 51.7
ASTPN [36] 62.0 86.0 94.0 98.0 77.0 95.0 99.0 99.0 44.0 70.0 -
DSAN [29] 61.2 80.7 90.3 97.3 74.8 92.6 97.7 98.6 69.7 83.4 -
DRSTA [27] 80.2 - - - 93.2 - - - 82.3 - 65.9
CSSA+CASE [28] 85.4 96.7 98.8 99.5 93.0 99.3 100 100 86.3 94.7 76.1
RQEN [78] 76.1 92.9 97.5 99.3 92.4 98.8 99.6 100 73.7 84.9 51.7
STAL [33] 82.8 95.3 97.7 98.8 92.7 98.8 99.5 100 82.2 92.8 73.5
SDM [64] 60.2 84.7 91.7 95.2 85.2 97.1 98.9 99.6 71.2 85.7 -
SPL [65] 70.5 91.4 96.8 99.1 85.3 97.2 99.4 99.7 74.8 86.7 -
A3D (proposed) 87.9 98.6 99.7 99.8 95.1 99.5 100 100 86.3 95.5 80.4

The STFV3D [18] method first attempts to treat the pedes-
trian video as a 3D bin. Specifically, STFV3D segments
the 3D bin into multiple spatial-temporal body-action sub-
bins and uses fisher vector to aggregate them. However,
STFV3D considers all sub-bins equally, ignoring that person
matching may be misled by some “bad” sub-bins due to
occlusions or clutter background. Compared with STFV3D,
our proposed method further explores the salient parts in the
3D video bin with our A3D model. Compared with other
methods also exploring spatial-temporal attentions, such as
TAM+SRM [26], ASTPN [36], DSAN [29], and DRSTA [27],
our A3D outperforms by a large margin, due to the consid-
eration about constraint and interaction between temporal and
spatial attention. CSSA+CASE [28] considers person ReID
as a binary classification problem and devotes to distinguish
whether given two video clips are the same identity, not
preserving the rank relationship among multiple samples. This
verification loss leads to a higher Rank-1 accuracy but relative-
ly low mAP performance. Different from CSSA+CASE [28],
we focus on the rank relationship in our objective function,
and consequently, we obtain the same Rank-1 accuracy and
improve mAP by 3.7% on MARS dataset, compared with
CSSA+CASE [28]. Our A3D method also outperforms with
a large margin over SDM [64] and SPL [65], which also
introduce the RL to select key frames for video-based person
ReID, since we additionally consider the spatial attention-
aware learning in our A3D framework.

C. Ablation Study

To investigate the contribution of individual components
in the A3D attention framework, we conducted two ablation

evaluations on the iLIDS-VID dataset. First, we compared
the complete A3D model with other incomplete settings,
including (1) removing attention model; (2) replacing with
a random attention agent; (3) removing the recurrent model;
(4) removing the RL objective; and (5) remove the optical-
flow stream. Second, we compared the proposed method with
other attention methods with the same base-model and hyper-
parameters, including (1) the QAN [35] method with our
representation model and (2) the separate attention method
which learns spatial attention on each frame first, and then
learns the temporal aggregation attention using QAN.

Table VII summarizes the performance of the different
variants of the proposed method. It is easy to draw the
following conclusions from the comparison. (1) By comparing
the baseline model without attention and our A3D model, we
conclude that our A3D model can learn the salient bins of
pedestrian video and improve the representation learning by
the attention model. (2) The contrast between the proposed
A3D agent and random attention agent shows that random
attention agent without training predicts incorrect attention
bins which mislead the identification. It indicates that the pro-
posed A3D reinforcement learning framework learns a sensible
policy for attention agent with the reward and hybrid loss. (3)
As shown as ”w/o RNN” in Table VII, the performance drops
without the RNN module, which demonstrates that the RNN is
effective to obtain multiple attention clues. The motivation of
the recurrent model is replacing the single attention bin with
multiple ones for more robust representation learning. In the
experiments, the RNN-based multi-head attention outperforms
the single one with 1.1%/0.7% Rank-1/mAP improvement. It
is not small since this improvement is achieved on a very
strong baseline. (4) As shown as ”w/o RL objective” in Ta-
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TABLE VII
ABLATION STUDIES ON THE ILIDS-VID DATASET.

Datasets iLIDS-VID
Rank@R R=1 R=5 mAP
proposed 87.9 98.6 92.5
w/o attention 85.9 97.7 91.3
random attention 80.5 96.8 87.6
w/o RNN 86.8 98.5 91.8
w/o RL objective 85.0 96.6 90.1
w/o optical-flow 84.8 96.8 88.7
QAN* 85.8 98.1 91.0
Separate attention* 86.3 98.3 91.5

TABLE VIII
PARAMETERS ANALYSIS OF THE NUMBER OF STEPS IN THE RNN ON THE

ILIDS-VID DATASET.

Datasets iLIDS-VID
Rank@R R=1 R=5 mAP
one step 86.8 98.5 91.8
two steps 87.4 98.3 92.2
four steps (full) 87.9 98.6 92.5

ble VII, the performance is decreasing when we reduce the RL
objective, which demonstrates the effectiveness and necessity
of the RL algorithm. (5) The improvement with a large margin
due to the optical-flow stream shows that the developed two-
stream representation network effectively captures the motion
information in the video and helps for person verification.
AMOC+ EpicFlow [30] and CSSA+CASE [28] also utilize the
optical flow as extra input to boost performance. (6) We have
implemented and compared with the classic attention method
QAN [35]. As shown as “QAN*” in Table VII, the proposed
method also outperforms QAN* in terms of the accuracy at
Rank=1 and mAP. The ∗ indicates that these methods are
implemented using our base model with the same hyper-
parameters. (7) The main difference between “separate atten-
tion” and QAN is that “separate attention” method employs the
extra spatial attention. “separate attention” performing better
than QAN indicates that the spatial attention is conducive
to video representation. (8) The joint A3D method also im-
proves over “separate attention*” which demonstrates that the
constraints about spatial and temporal attention promote the
attention learning.

D. Parameter Analysis

In this subsection, we analyzed the influences and sensitivity
of major parameters. We conducted the parameters analysis
experiments on the iLIDS-VID dataset. Specifically, we mainly
investigate the number of glimpses, the size of attention region,
the model complexity and show the convergence process.

Glimpse number: We further investigate how the perfor-
mance of the proposed method changes when the number
of steps in the RNN is varied. Table VIII summarizes the
performance with different numbers of steps in the RNN
model. The “step” denotes the number of recurrent cells in
our RNN model, and indicates the number of attention bins.
We observe that the performance is boosted correspondingly
with the increasing of step numbers, since multiple attention
maps can capture more discriminative information for person
ReID. However, the improvement diminishes when the number

TABLE IX
ANALYSIS OF TRAINING AND INFERENCE COST ON THE MARS DATASET.

Method Training (h) Inference (video/s) Size (Mb)
w/o Attention 5.8 12.7 99.4
Our method 6.0 11.6 99.5

Fig. 5. Rank 1 accuracy and mAP scores on the iLIDS-VID dataset with
different temporal lengths of attention region.

of attention bins is enough. For example, the gap between the
performance of two-step and four-step attention is faint.

Attention region size: The size of the 3D attention region
is also an important parameter of our method. We analysis
the attention size in the both temporal and spatial domains.
Fig. 5 shows the performance with different temporal lengths
and fixed spatial size 6×3, which demonstrates that our A3D
model is generally robust for the temporal lengths. However,
too large temporal lengths reduce the performance, since the
effect of temporal attention is weakened. As shown in Fig. 6,
we also show the variances when the spatial size of attention is
changed. The attention model with almost parameter settings
achieve competitive results, which are better than 87%, except
for too small attention regions. This may be because the small
attention region is hard to locate the whole salient part.

Complexity analysis: As shown in Table IX, we show the
computing costs of our method and the baseline (without atten-
tion) on the MARS dataset including training time, inference
efficiency and model size. We can observe that our method
requires negligible training and inference costs comparing to
the baseline.

Convergence process: As shown in Fig. 7, we plot the
training curves on different datasets where the abscissa denotes
epoch number and ordinate denotes the testing performance.
The blue and red curves respectively denote the Rank-1 and
mAP metrics. All curves show that our method can achieve
general convergence at 100 epochs. For the rest epochs, our
method can gradually obtain better performance with some
fluctuations.

E. Cross-Dataset Evaluation

In real surveillance systems, time and monetary cost are
prohibitive to label overwhelming amount of data. Therefore,
we usually apply our ReID system for unseen persons and
scenes. In the conventional benchmarks, the pedestrian videos
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Fig. 7. The training processes on different datasets, which describe the development of performance with the increasing epochs. From left to right, we
respectively display the curves of PRID-2011, iLIDS-VID, and MARS.

Fig. 6. Rank 1 accuracy on the iLIDS-VID dataset with different widths and
heights.

TABLE X
RANK CMC ACCURACY OF CROSS-DATASET TESTING

Datasets iLIDS-VID/PRID-2011
Rank@R R=1 R=5 R=10 R=20
CNN+RNN [22] 28.0 57.0 69.0 81.0
QAN [35] 34.0 61.3 74.0 83.1
ASTPN [36] 30.0 58.0 71.0 85.0
RQEN [78] 61.8 82.6 90.4 96.1
STAL [33] 63.7 84.0 92.8 98.1
A3D (proposed) 64.2 84.7 92.8 98.5

in both training and testing processes are captured from the
same surveillance scenarios, where illumination conditions
and backgrounds are relativity consistent. Even though some
transfer learning based methods have been prospoed to transfer
the model from source domain to the target domain, they
always need the information (e.g. images or attributes) of
target domain and train the target-specific model with these
information, which are not immediately available. To eval-
uate the effects of the proposed method applied to a real-
world surveillance system, we conducted the cross-dataset
testing [22], where the model is trained by a randomly split
training set of the iLIDS-VID dataset and tested on the testing
set of the PRID-2011 dataset. Besides, we also repeated the
evaluations for 10 splits and calculated the average accuracy.

Table X summarizes the performance of the proposed
method and the state-of-the-art methods in the cross-dataset
testing, including CNN+RNN [22], QAN [35], ASTPN [36],

RQEN [78], and STAL [33]. In the cross-dataset setting, we
also obtain Rank 1 accuracy improvement compared with other
methods. Compared with CNN+RNN [22], ASTPN [36] and
QAN [35], we achieve a significant improvement with spatial-
temporal attention model. While compared with RQEN [78]
and STAL [33], we still slightly outperform them by the 3D
consistent.

F. Visualization of Attention Model

In Figure 8, we depict the 3D attention regions generated
by the proposed A3D method of 3 example persons in the
iLIDS-VID dataset. In our A3D model, the agent iteratively
predicts 4 attention bins for given video clips. We select the
last three attention to show in Figure 8 as purple, blue and
orange cuboids respectively. Figure 8 (a) shows the complete
recurrent 3D attention bins in the original prediction video
clips. While Figure 8 (b) displays the specific spatial attention
region location for the third frame of each video. With the
visualization of attention bins on pedestrian video examples,
we demonstrate the proposed recurrent A3D attention model
precisely captures the salient spatial regions and key temporal
frames. Specifically, the top example shows that the A3D
attention selects the frames with less occlusions, and the
bottom example indicates the proposed agent tends to select
the spatial regions without occlusions. The middle example
shows that the A3D agent locates the more salient part for the
video without occlusions. Besides, for the salient parts of the
video clips, our A3D agent even favors more glimpses on the
same location.

V. CONCLUSIONS

In this work, we have proposed a recurrent 3D attention
reinforcement learning framework to consider the spatial-
temporal consistency in the attention detector. In our frame-
work, we first extract both appearance and motion information
with a two-stream network and then apply an RNN model
to iteratively select multiple salient 3D bins in the video. To
train the non-differentiable attention selection, we formulate
it as MDP and optimize it with REINFORCE. We evaluated
our method on three video person re-identification datasets
and demonstrated consistent improvement of our proposed
approach over state-of-the-art methods. The attention bins in
our approach are rigid, which are restricted by the decision
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(a) (b)

Fig. 8. 3D attentions of person samples in the iLIDS-VID dataset. (a)
shows the recurrent 3D attention bins predicted by the proposed method in the
original prediction video clips. To precisely visualize the locations of spatial
attention regions, we draw the third frame of each video clip as examples and
display the spatial regions in these frames in the part (b). Taking the first clip
as the example, the part (a) of this figure shows that the learned attention bins
focus on the frames with less occlusions from signboard, while the part (b)
demonstrates that these attention bins focus on the salient spatial region (the
bag). Best viewed in color.

complexity of an attention agent. In the future, we will try to
learn a deformable 3D attention bin, which is more flexible
and robust in the pedestrian video.
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