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TABLE I
ABLATION STUDY OF THE PARAMETER λ ON THE MARKET-1501 DATASET.

λ mAP R-1 R-5
λ = 0.1 89.5 95.6 98.5
λ = 0.5 90.2 96.1 98.9

λ = 1 (Ours) 90.5 96.2 98.8
λ = 2 90.4 95.9 98.8

A. MORE PARAMETERS ANALYSIS

A. Influence of parameter λ
As shown in Table I, we investigate the inference of different

values of parameter λ to the APNet-C model on the Market-
1501 dataset, including λ = 0.1, λ = 0.5, λ = 1, and λ = 2.
The parameter λ denotes the balance rate between the cross-
entropy loss and triplet loss. We observe that the performance
is stable when the rate λ changes from 0.5 to 2. It demonstrates
the model is robust to the change of triplet loss rate. Besides,
when we further reduce the rate λ to 0.1, we observe the
obvious performance reduction. It might be because the impact
of the triplet loss can not match the one of cross-entropy loss.
It indicates that the triplet loss is also important to train the
model by reducing the intra-class distances and enlarge the
inter-class distances.

B. Analysis of multi-part model
We find that the multi-part trick in MGN [1] is very effective

on the CUHK03 dataset. We conducted an ablation study
to analyze it. The multi-part trick adds a new local branch
which splits the feature map into two parts and learns the
local features. Specifically, the feature maps are split from
the third residual block along the height dimension. In the
inference, we connected the original global feature with local
features for final matching. As shown in Table II, the multi-
part trick can effectively improve the performance on both
labeled and detected CUHK03 datasets. It is because the scale
of the CUHK03 dataset is small, where the multi-part trick
indicates the prior knowledge of human images. However, the
effectiveness of this trick is limited when we add the scale of
datasets (e.g., MSMT17 [2] or Market-1501 [3]).

C. Analysis of model size and inference time
In Table III, we also compare the model size and inference

time of our channel-wised APNet and other methods. Com-
pared with the baseline SE-ResNet [4], the extra complexity
requirement of our APNet is limited. Compared with other
methods such as Pyramid ReID [5] and SCSN [6], our APNet
is more efficient by the “split-attend-merge-stack” principle.

TABLE II
ABLATION STUDIES OF MULTI-PART TRICK IN MGN [1] ON THE CUHK03

DATASET.

CUHK03 Labeled Detected
mAP R-1 R=5 R-10 mAP R-1 R=5 R-10

APN-C 82.1 84.2 93.9 95.9 79.5 82.4 92.6 95.9
APN-C + Multi-part 85.3 87.4 95.4 96.8 81.5 83.0 93.7 95.9

APN-S 77.0 79.9 93.8 95.7 75.6 77.4 91.2 94.7
APN-S + Multi-part 81.1 83.5 93.2 95.8 78.1 80.9 93.4 94.7

TABLE III
GFLOPS, MODEL SIZE AND INFERENCE TIME OF DIFFERENT METHODS.

Methods GFLOPS Model-size (M) Inference (image/s)
APNet-C 6.24 26.37 395

SE-ResNet [4] 6.24 26.02 526
Pyramid ReID [5] 9.96 31.04 287

SCSN [6] 7.24 31.87 326

B. MORE COMPARISONS

A. Comparisons with Non-local [7] and TransReID [8]

We compared the proposed method with other attention-
based approaches including Non-local [7] and TransReID [8].
The Non-local [7] method applies the self-attention model
to capture long-range dependencies. Non-local also adds the
attention model in each block of the backbone network. Tran-
sReID [8] applies the vision transformer for the person ReID
task. Different from other person ReID methods, TransReID
uses the extra supervisory signals (e.g. Camera ID) to train
the models.

Table IV summarizes the performance of Se-ResNet50 [4],
Non-local [7], TransReID [8], and our APNet. The perfor-
mance of Se-ResNet50 [4] and Non-local [7] is comparable
and better than the one of ResNet baseline. It demonstrates
the attention model is effective for the person ReID task.
Compared our APNet with Non-local, we observe a signifi-
cant performance improvement which shows that APNet can
further improve the accuracy of the model by mining the
multi-scale salient clues. Compared transformer-based method
TransReID [8] with other CNN-based methods, TransReID
cannot obtain the improved performance and uses the extra
supervisory signals. Besides, TransReID needs 2.8 times the
inference time over the ResNet50. It shows that the inductive
bias of CNN (local relation) might be useful to recognize the
high-structured objects such as the person.

1) Comparison with Pyramid ReID [5]: We further explain
from what aspects is the proposed attention pyramid better
than Pyramid ReID [5] as shown in Table IV. Pyramid ReI-
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TABLE IV
COMPARISON WITH NON-LOCAL [7] AND TRANSREID [8] ON THE

MARKET-1501 DATASET.

Method mAP R-1 R-5
ResNet50 87.8 95.0 98.6

Se-ResNet50 [4] 88.6 95.5 98.5
ResNet-50 + Non-local* [7] 88.7 95.6 98.5

TransReID [8] ViT-B/16 89.5 95.2 -
APNet-C 90.5 96.2 98.8

D [5] obtains the pyramidal features by the split and adds the
classifier for each feature. Pyramid ReID [5] applies the “split-
classification” principle, while our APNet proposes the “split-
attend-merge-stake” principle. Compared with the principles
of our APNet and Pyramid ReID [5], only the “split” principle
is similar, while the “attend-merge-stake” principle is the main
aspect that APNet is better than Pyramid ReID from. We will
explain these differences in the following: 1) Different from
Pyramid ReID [5] obtaining pyramidal features for classifica-
tion, our APNet split features to learn the pyramidal attentions.
The object of the pyramid structure is different. Pyramid ReID
directly uses the split feature for further encoding and classi-
fication, while APNet learns the sub-attentions of each split
feature. 2) By the “merge” principle, APNet only obtains one
single feature of one person image. While Pyramid ReID [5]
use all pyramidal features for multiple losses. The “merge”
principle reduces the computing cost of the model. 3) By the
“stack” principle, APNet applies coarse attention to guide the
learning of the fine-grained attention. In Pyramid ReID, all
pyramidal features with different pyramid levels are fed into
a CNN block and a classifier. The “stack” principle smooths
the learning of the attention model. 4) APNet introduces a
multi-stage strategy that applies the pyramidal attention at the
top of each residual block. This multi-stage strategy gradually
guides the deep network to discover the salient clues. In the
contrast, the pyramidal features in Pyramid ReID are only used
before classification. 5) APNet can be implemented with any
basic attention model, e.g. channel-wise attention or spatial
attention. Pyramid ReID is only used for the spatial split.

B. Comparison with SNR [9], LAG-Net [10], and CBDB-
Net [11]

The comparison with SNR [9]: SNR aims to improve the
generalization capability of the person ReID model by filtering
out identity-irrelevant interference with instance normalization
and learning domain-invariant person representations. APNet
focuses on mining the multi-scale salient clues to improve
the accuracy of the ReID system by attention pyramid. The
objective and motivation of these two methods are different. To
evaluate the generalization capability of the person ReID mod-
el, SNR conducts the experiments for unsupervised domain
adaptation person ReID tasks, whose source domain is labeled
and target domain is unlabeled. While APNet conducted the
experiments on the traditional person ReID task to evaluate
the representation ability. Therefore, these two methods can
not be directly compared. As shown in Table IV, we select the
results of SNR when the source domain and target domain

TABLE V
THE COMPARISON ON THE VIPER DATASET.

VIPeR R-1 R-5 R-10
LOMO+ XQDA 40.0 - 80.5
GOG + XQDA 49.7 79.7 88.7

ResNet50 36.7 69.0 80.4
APNet-S 46.2 75.1 84.4
APNet-C 48.9 77.4 88.2

are consistent. We observe that the performance of SNR on
the single domain is limited. It is because the aim of SNR
is the cross-domain generalization but not the single domain
accuracy.

The comparison with LAG-Net [10]: LAG-Net includes
three streams, where GF-Stream is the baseline backbone
network which uses a global pooling to extract global features,
PF-Stream is similar with Pyramid ReID [5] and APNet to
extract the part features by splitting, LA-Stream introduces
the Region-Interest Map (RIM) and a local attention system
to generate diversity local features. LAG-Net also learns the
multi-granularity features and employs the attention model.
However, the multi-granularity feature and attention model are
applied to different branches. Different from LAG-Net, our
APNet aims to learn pyramidal attention where our attention
model is multi-granularity. Besides, APNet doesn’t apply the
multi-stream trick and only learns the single global feature.
As shown in Table IV, we also add the comparisons with
LAG-Net [10]. With only one stream, our APNet achieves
the significant improvement on the Market-1501 dataset and
obtain comparable results on the DukeMTMC-reID dataset,
over the three-stream LAG-Net. We believe that LAG-Net can
achieve further improvement by using our APnet.

The comparison with CBDB-Net [11]: CBDB-Net proposes
to drop a part of the feature to improve the robustness. To drop
the feature part, CBDB-Net also applies the “split” strategy.
Different from CBDB-Net, APNet applies the “split-attend-
merge-stack” principle to build the attention pyramid. The
CBDB-Net doesn’t use the other principles (e.g. “attend”,
“stack”), build the pyramidal features, or apply the attention
model. As shown in Table IV, we also add the comparisons
with CBDB-Net [11]. APNet outperforms the CBDB-Net [11]
by a large margin on all three datasets.

C. EVALUATIONS ON VIPER

We also evaluated our method on the VIPeR [12] dataset.
The VIPeR dataset contains 632 person images captured from
two camera views. As argued in early deep learning based
person re-identification methods such as JSTL [13], Spindle
Net [14] and PDC [15], the amount of images in VIPeR is
not enough to train the deep neural network. Therefore, these
methods use the extra data to train the network. However, the
experimental protocols of these methods are not consistent.
Spindle Net [14] uses seven person ReID datasets to jointly
train one model. While PDC [15] uses three datasets for joint
training. In these settings, we cannot investigate performance
behavior on a short dataset. Therefore, we directly train the
baseline network and our model on the single VIPeR [12]
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Fig. 1. Detailed visualization of attentions in two levels. We visualize the
learning process of attention in two levels and show the differences. The level-
1 attention is coarse-grained, which the foreground and salient information.
While level-2 attention is more fine-grained. In this example, the level-1
attention mainly focuses on the salient umbrella, whole T-shirt, and legs,
while level-2 attention further focuses on the umbrella, the logo of the T-
shirt, and the shoes. The attentions of two levels are complementary in
attention granularities, where level-2 attention is generated based on the level-
1 attention.

dataset. As shown in Table V, we compare our methods
(2-layer channel-wised APNet and spatial APNet) with the
baseline network (ResNet50 without attention model) and the
hand-crafted features including LOMO [16] and GOG [17].
We observe that the performance of learning based methods
is lower than the hand-crafted ones. It is reasonable since
the number of images in VIPeR is not enough to train the
deep network. In addition, we observe that APNet improves
the baseline network by a large margin. It indicates that the
attention model is effective to guide the learning of deep neural
networks with limited data and avoid over-fitting.

D. MORE VISUALIZATIONS

To explain the difference between the two levels, we further
provide a detailed visualization and analysis in Figure 1. First,
level-1 attention is learned from the global image. This at-
tention is always coarse-grained, which shows the foreground
and salient information. In the example in Figure 1, the level-1
attention mainly focuses on the salient umbrella, whole T-shirt,
and legs. These salient regions provide discriminative clues for
person re-identification. In contrast, the level-2 attention focus
on the fine-grained cues. In the upper half, the level-2 attention
further focuses on umbrella and the logo of the T-shirt. In the
other half, level-2 attention focuses on the shoes instead of the
whole legs. The attentions of two levels are complementary in
attention granularities. Besides, as shown in Figure 1, level-2
attention is generated based on level-1 attention. Thus, level-2
attention can be regarded as a fine-grained version of level-1
attention.

To show the learned attentions on the cross-dataset evalu-
ation, we further visualize attentions under different training
datasets (Market-1501 and DukeMTMC-reID) for the persons.
In Figure 2, we show the attention maps trained with different
training dataset on the same person in Market-1501. We
observe that the attention maps is stable, even though the
cross-dataset performance gap is huge. Besides, we find that
the attentions trained with with cross-datasets are more diffuse,
and the difference between level-1 and level-2 attentions be-
come small. It is because of the domain shift, i.e., the attention
trained with cross-dataset lacks of accurate supervisions to
learn accurate and fine-grained attentions.

Input image Attention at !! Attention at !"

Attention trained on Market1501 Attention trained on DukeMTMC-reID

Input image Attention at !! Attention at !"

Fig. 2. The attention maps trained on Market-1501 and DukeMTMC-reID
datasets. For two persons in Market-1501, we respectively display the attention
maps trained on Market-1501 and DukeMTMC-reID datasets, from left to
right. Despite the large domain gap, we observe that the attention maps trained
on two different datasets are stable and accurate.
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