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Unintentional Action Localization
via Counterfactual Examples
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Abstract— How do humans localize unintentional action like
“A boy falls down while playing skateboard”? Cognitive science
shows that an 18-month-old baby understands the intention
by observing the actions and comparing the feedback. Moti-
vated by this evidence, we propose a causal inference approach
that constructs a video pool containing intentional knowledge,
conducts the counterfactual intervention to observe intentional
action, and compares the unintentional action with intentional
action to achieve localization. Specifically, we first build a video
pool, where each video contains the same action content as
an original unintentional action video. Then we conduct the
counterfactual intervention to generate counterfactual examples.
We further maximize the difference between the predictions of
factual unintentional action and counterfactual intentional action
to train the model. By disentangling the effects of different clues
on the model prediction, we encourage the model to highlight
the intention clue and alleviate the negative effect brought by
the training bias of the action content clue. We evaluate our
approach on a public unintentional action dataset and achieve
consistent improvements on both unintentional action recognition
and localization tasks.

Index Terms— Temporal action localization, causal inference,
video pool, counterfactual intervention, intention.

I. INTRODUCTION

CONSIDERING a video such as “A boy falls down while
playing skateboard” shown in Fig. 1, humans can easily

understand the intention [1], i.e., “playing skateboard” is
an intentional action and “falling down” is an unintentional
action. For intelligent systems, such as self-driving vehi-
cles and robots, understanding the intention behind observed
action is of critical importance to avoid risks and failures.
Existing video understanding methods can answer what the
action content is (i.e., action recognition [2]–[7]) or when
the action starts and ends (i.e., temporal action localization/
detection [8]–[12]), and how the action quality is (i.e., action
quality assessment [13]–[17]), yet cannot explain the reason
why the action fails (i.e., the action transition from intentional
to unintentional).
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It is challenging for a machine to localize unintentional
action only by observing failures in the video since it
cannot imagine what the intentional development of unin-
tentional action should be. Current unintentional action
localization (UAL) methods, e.g., [18], recognize action inten-
tionality by using spatial-temporal features in a likelihood
manner. However, most of these methods may ignore the fact
that video features contain both action content and intention
clues, where the former may bring the training bias which
misleads the model to learn spurious correlations instead of
real causations. Specifically, in the public unintentional action
dataset [18], the action content brings the training bias, that
is to say, the time-stamps of unintentional actions occurring
are biased for different action contents. For example, in the
training set, the time-stamps of occurring unintentional actions
in the “Playing skateboard” videos are different from the
time-stamps of occurring unintentional actions in the “Doing
handstand” videos. Therefore, the model prediction may be
falsely attributed to the action content instead of occurring
unintentional action. This is the spurious correlation brought
by the training bias. Besides, these spurious correlations
learned from the training bias are difficult to be transferred
to the testing. For instance, the time-stamps of occurring
unintentional actions in the “Playing skateboard” videos are
concentrated in different time segments respectively in the
training and testing sets. An intuitive solution is to disentangle
video features into the action content and intention clues
to remove the bias. Unfortunately, it needs a large number
of fine-grained annotations of action contents and a more
complex disentangled model.

To address this problem, we propose an Unintentional
Action Localization via Counterfactual Examples (UAL-CE)
approach to disentangle the effects of content and inten-
tion clues, which mitigates the negative effect brought by
biased action content and highlights the causal effect of
intention on model prediction. UAL-CE consists of two stages:
1) conducting the counterfactual intervention to observe the
intentional development, and 2) comparing original uninten-
tional action with counterfactual intentional action, simulating
the observing and comparing processes of baby understand-
ing the intention. To this end, we first construct a causal
graph, where action content is a confounder that causes the
spurious correlation between intention and prediction. Then
we construct a video pool containing intentional knowledge
and conduct the counterfactual intervention to imagine the
intentional situation of unintentional action, which cuts off
the dependence of intention on action content. Given an
original video composed of the former intentional action and
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Fig. 1. How do humans localize unintentional action like “A boy falls down while playing skateboard?” We argue that it requires (1) observing how the action
performs intentionally and (2) comparing unintentional and intentional actions. We propose a causal inference approach that constructs a video pool containing
intentional knowledge, uses counterfactual intervention to generate the counterfactual example, and makes the comparison between factual unintentional video
and counterfactual intentional video to analyze the causation of intention.

subsequent unintentional action, we utilize the former inten-
tional action to search for the intentional action in the counter-
factual video, and concatenate the former intentional action in
the original video and subsequent intentional development in
the counterfactual video to generate the counterfactual exam-
ple, where the counterfactual video is composed of the inten-
tional action and subsequent intentional development. Finally,
we train the model by maximizing the difference between the
predictions of original and counterfactual examples, which
encourages the model to detect the action transition from
intentional to unintentional, i.e., finding out the reason why
the action fails. We alleviate the negative effect of action
content by subtracting the counterfactual prediction from the
original one. We evaluate UAL-CE on the OOPS dataset for
unintentional action recognition and localization tasks and
achieve consistent improvements.

The main contributions are summarized as follows:
• We introduce the causal inference into UAL to analyze

the causation of intention and alleviate the spurious
correlations of biased action content.

• We construct a video pool with intentional knowledge
to equip the machine with common sense to know what
happens if humans change the original fact and do the
thing successfully instead.

• We propose the counterfactual intervention to observe
how actions perform intentionally and generate counter-
factual examples for calculating causal effects.

• Our approach significantly outperforms other state-of-
the-art methods on the OOPS dataset for the tasks of
unintentional action recognition and localization.

II. RELATED WORK

In this section, we briefly review four related topics,
including temporal action localization, unintentional action
localization, anomaly detection, and causal inference.

A. Temporal Action Localization

Temporal action localization, different from action
recognition [19]–[21], which not only recognizes the action
category but also localizes the start and end of the action.
In early pioneering work, Gan et al. [22] proposed DevNet
that was the first to simultaneously detect pre-defined events
and provide key spatial-temporal evidence. Later, many
deep learning-based methods [8], [10], [11], [22]–[27]
utilized temporal proposals to localize human action. For
example, Shou et al. [8] proposed the multi-stage CNNs by
combining three segment-based 3D ConvNets, including a
proposal network, a classification network, and a localization
network. Chen et al. [25] proposed a relation attention
module to effectively exploit the relation between video
proposals, which can be simply applied to various action
localization algorithms. Zeng et al. [26] proposed Graph
Convolutional Networks (GCNs) over the graph to model
the relations among different proposals and learn powerful
representations for the action localization. To solve the
problem of heavy tuning of locations and sizes corresponding
to different anchors, Lin et al. [28] proposed an efficient
and effective anchor-free temporal localization method.
In addition, some other related works were based on the
probability distribution curve [9], [29]–[31]. For instance,
Shou et al. [9] proposed a convolutional de-convolutional
filter to simultaneously perform spatial downsampling and
temporal upsampling, and design a network to predict
actions at frame-level. Yang et al. [29] presented temporal
preservation convolutional (TPC) network equipped with
3D ConvNets with TPC filters, which preserves all the
temporal information to make frame-level action predictions.
However, temporal action localization only tells us the action
category and its temporal boundary but cannot recognize the
action intentionality variation to explain the reason why the
action fails.
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B. Unintentional Action Localization

Unintentional action localization aims at understanding
action intention and localizing when an intentional action turns
into unintentional action. To understand the action intention,
Epstein et al. [18] collected an unintentional action video
dataset (i.e., OOPS) and trained a three-way classifier to recog-
nize the action as intentional, transitional, and unintentional.
Furthermore, Epstein and Vondrick [32] further annotated the
goals of original video actions to improve supervision quality
and trained discriminative video representations. The inputs
of these models are the spatial-temporal features containing
both action content and intention clues, which usually misleads
the model prediction with the spurious correlation brought by
biased action content. Hence, we propose a causal inference
approach to mitigate the negative effect of training bias.

C. Anomaly Detection

Anomaly detection aims to determine all dissimi-
lar instances due to several reasons, such as malicious
actions, system failures, intentional fraud, violence, or
aggression [33]–[36]. In recent years, deep learning-based
methods employed deep generic knowledge [37], stacked
recurrent neural network [38], cascaded deep network [39] and
plug-and-play CNNs [40], [41] for anomaly detection. Since
real-world anomalous events are complicated and diverse, it is
difficult to list all of the possible anomalous events. Therefore,
the solution of some specific anomalous events cannot be gen-
eralized to detect other anomalous events, which is the most
challenging problem for anomaly detection. Different from
anomaly detection, the difficulty of UAL is to learn the knowl-
edge of human action intention and localize unintentional
action when only observing the video containing unintentional
failures. Anomaly detection focuses on abnormal behavior
patterns that are intentional, e.g., “retrograde”, “fight”, and
“steal”, while UAL focuses on unintentional failures, e.g., “fall
down” and “slip off”.

D. Causal Inference

Causal inference [42]–[44] empowers the ability to pursue
the causal effect, which investigates the subsequent effect
when the cause is changed. Understanding the causations is
critical to remove data bias [45]–[48], build transparent and
explainable model [49]–[52], promote fairness [53]–[55], and
recover from missing data [56], [57]. Recently, causal infer-
ence has been applied for different fields including natural lan-
guage processing [58], [59], reinforcement learning [60], [61]
and computer vision [48], [62], [63]. Inspired by causal effects,
we introduce causal inference to conduct the counterfactual
intervention to alleviate the negative effect brought by the
training bias of action content. Different from recent debi-
asing methods used for visual question answering [64], [65]
and multi-label image classification [52], [66], our approach
constructs extra data containing intentional knowledge and
introduces it into the model training to remove the spurious
correlations of biased action content clues and highlight the
intention clues in the videos.

III. APPROACH

In this section, we will introduce how to localize the unin-
tentional action via counterfactual examples. We first formally
define the problem and build a causal graph of UAL to
analyze the causations. Then we present our causal inference
approach, including a video pool construction, counterfactual
intervention, and ETT Calculation, and describe the details of
network architecture and optimization method.

A. Problem Definition

The intention is of critical importance for personal decision-
making, where the intentional and unintentional actions serve
as two opposite situations. Existing method [18] defines a
task that localizes the time-stamps of unintentional actions
occurring in realistic videos to teach the model to understand
action intention. We formulate this task as a sequential recog-
nition problem, which extracts the clues from prior information
and current observation to recognize whether the unintentional
action occurs at the current time-stamp. Given a video includ-
ing T frames X = {xt |t = 1, 2, · · · , T }, the model recognizes
the intentionality of action in each frame as one of three action
state categories Y = {yt |t = 1, 2, · · · , T }, where yt ∈ {0, 1, 2}
denote different states of the action including intentional,
transitional, and unintentional. Predicting the action state of
each video frame, we localize the unintentional action by
selecting the time that most likely occurring unintentional
action, which is implemented by localizing the transition from
intentional to unintentional:

t̂ = arg max
t

P(yt = 1|xt ), (1)

where P(yt = 1|xt ) denotes the probability of transition from
intentional to unintentional at this time, indicating uninten-
tional action beginning (transition to unintentional action).
In our approach, suppose that a video containing unintentional
action can be divided into two parts, including an intentional
part C and the combination of transitional and unintentional
parts U . The former C denotes the action content like “playing
skateboard”, while the latter U consists of the reason why the
action fails and the time of unintentional action occurring. It is
difficult to overcome the data bias by using U and removing C
since the above two parts U and C of a video are coupled.

B. Causal Graph Construction

In Fig. 2, we construct a causal graph of UAL where the
nodes include an input video X , action content C , uninten-
tional action U , and intentionality prediction Y . Considering
an example that “A boy falls down while playing skateboard”,
the nodes are described as follows:
• X denotes the input video which contains the action con-

tent clue such as “playing skateboard” and the intention
clue like “falls down”.

• C is the action content such as “playing skateboard”.
• U is the unintentional action that denotes the failure

occurring in the input video such as “falls down”.
• Y is the prediction of the model, which denotes the

time-stamp of unintentional action occurring.
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Fig. 2. The causal inference approach of unintentional action localization.
(a) shows input unintentional video and counterfactual intentional video of
“playing skateboard”. (b) illustrates the calculation of the effect of treatment
on the treated (ETT) and the corresponding operations on the causal graph
of UAL. In (b), the left and the right parts respectively denote the causal
graph before and after using the counterfactual intervention, where the shadow
indicates that the variable is counterfactual.

The link means the causal dependence between two vari-
ables, where U → Y denotes that U is the cause and Y is
the effect. The links in our structural causal model shown in
Fig. 2 are described as follows:
• U ← X → C shows that a video with unintentional

action contains both action content and intention clues.
• U → Y ← C shows that both action content and

intention clues have influences on the final intentionality
prediction, where U → Y is the real causation of
intention and C → Y is the spurious correlation brought
by the training bias. As shown in Fig. 3, in the training
set, unintentional actions occur in [1.6, 4.2] seconds in the
“Playing skateboard” videos and those occur in [2.1, 6.3]
seconds in the “Doing handstand” videos. It is obvious
that the time-stamps of unintentional actions occurring
are biased for different action contents (i.e., “Playing
skateboard” and “Doing handstand”).

• U ← C → Y denotes that the action content C has
influences on both the unintentional action U and the final
prediction Y . C is defined as a confounder [67] which
confounds the real causation between action intention and
intentionality prediction. As shown in Fig. 3, the real
cause of model prediction may be falsely attributed to the
action content instead of unintentional action occurring.

C. Localization With Counterfactual Examples

Although strong deep networks can fit visual features with
intentionality labels in a correlation-driven manner, the real
causations of the model prediction are still nontransparent.
The visual features contain action content and intention clues,
where the former usually brings the training bias which
misleads the model to learn the spurious correlations instead of
real causations. Disentangling the action content and intention
clues in the features needs a large number of fine-grained

Fig. 3. Examples of statistical training bias on the OOPS dataset. We show
the frequencies of unintentional actions occurring at different time-stamps on
both training and testing sets for two action contents including (a) “Playing
skateboard” and (b) “Doing handstand”. The bias exists in different action
contents and cannot be transferred from the training to the testing sets. Best
viewed in color.

annotations and a more complex disentangled model. Hence,
we propose UAL-CE to disentangle the effects of different
clues on the model prediction and mitigate the spurious
correlations. Motivated by a baby understanding the inten-
tion via observing the actions and comparing the feedbacks,
UAL-CE contains two steps: (1) conducting the counterfactual
intervention to imagine and observe the intentional devel-
opment of original unintentional action and (2) comparing
original unintentional action with counterfactual intentional
action to analyze the intention. UAL-CE can mitigate the neg-
ative effect brought by the training bias of action content and
highlight the causal effect of intention on model prediction.

UAL-CE is based on the counterfactual intervention in the
causal inference theory [42], [50], [68] to mitigate the negative
effect of the biased data. First, we show that the construction
of the counterfactual example is beneficial to learning the
de-confounded representations. The construction process is
similar to the intervention process, which fixes the value of one
variable and observes the change of other variables. According
to the causal inference theory in [68], the intervention takes
the form of fixing the value of a variable in the graphical
model, which amounts to performing a kind of surgery on the
graphical model (i.e., removing all edges directed into that
variable). When using the counterfactual example, we conduct
the intervention on variable U and obtain the prediction
as P(Y |do(U = u)), where the do-operator indicates we
intervene to make U = u. In the causal theory, when P(Y |U =
u) �= P(Y |do(U = u)), variables U and Y are confounded by
the confounder C . We block the effect from C to U and obtain
the joint effect of both U and C on Y as P(Y |C, do(U = u)).
To mitigate the biased effect from the confounder C , we keep
it invariant, change variable U from factual to counterfactual,
and calculate the prediction difference, which is defined as
the Effect of Treatment on the Treated (ETT) [68]. This is
equivalent to using the Randomized Control Trial [69] of
medical applications in the model training process, where the
effect of the factual one is the experimental group and the
counterfactual one is equal to the control group. By comparing
the control group and experimental group, we can mitigate the
effect of the environmental variable C and obtain unbiased
results. In the following subsections, we will introduce how
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to conduct the counterfactual intervention based on a video
pool and optimize the model by maximizing the ETT.

1) Video Pool Construction: Although humans have the
ability to easily imagine the counterfactual situation, it is
difficult for a machine to equip with such reasoning ability due
to the lack of common sense. Therefore, we build a video pool,
called OOPS-CE, containing intentional knowledge to imagine
and observe what happens if humans change the original fact
and do the thing successfully instead. OOPS-CE, denoted as V ,
contains more than 3000 videos downloaded from YouTube.
The number of downloaded videos is equal to that of original
annotated videos (containing available keywords) for training,
which is one-by-one correspondence via the keywords of
action content.
• Collection. We search videos from YouTube with the

keywords of action content provided by the OOPS [18]
dataset, such as “playing skateboard”, “doing handstand”,
“ride a unicycle”, and “playing the trampoline”, and
download the top one video in searched results for
each keyword. The above keywords come from the
annotation files (i.e., “train.josn” and “val.josn”) of the
OOPS dataset which can be found in “Natural lan-
guage descriptions.zip” downloaded at the official web-
site https://oops.cs.columbia.edu/data/. Fig. 4 displays
some pairwise videos from the OOPS dataset and video
pool (OOPS-CE), from left to right including “Riding
a unicycle”, “Riding over obstacles”, “Rope balance”,
“Surfing”, “Pole dance”, “High jump”, “Workout in
gym”, and “Jumping over another”. For example, the
top-left corner video pair shows a man riding a unicycle
falling off or not and the bottom-right shows a man
jumping over a person or not, where the top line of
each pair of videos denotes the original video and the
bottom is the video from V . OOPS-CE is available at
https://github.com/xujinglin/UAL-CE.

• Quality Control. During the process of building
OOPS-CE, the ambiguities of some keywords may lead
to downloaded videos with different action content from
the original labeled training videos. Therefore, we repeat
the download three times to verify the reliability of the
downloaded videos and further ask three workers to check
and update them to control the quality of the video pool.
Fig. 5 shows two examples filtered out when controlling
the quality of OOPS-CE, where the top line of each
video pair denotes the original video and the bottom
line denotes the filtered out video. It can be seen that
the action contents of filtered-out videos are irrelevant to
original labeled training videos, despite they are described
by the same keywords. For instance, the video pair in
Fig. 5 (a) have the same keyword “Uneven bars” but
contain different action content, since the performers
use “Uneven bars” in different manners to do different
things. Besides, the video pair in Fig. 5 (b) contain the
same keyword “Sleeping at the desk” while their action
contents are different because the performers are a person
and a cat, respectively.

• Statistics. The video pool (i.e., OOPS-CE) applied to
train contains 3000+ videos since only 3000+ original

labeled training videos in the OOPS dataset have available
keywords for searching and the rest training videos are
described by “Don’t know!” which cannot be used to
construct counterfactual data. Fig. 6 shows the statistics
of both the OOPS dataset and OOPS-CE, including the
distributions of original video lengths, action class distrib-
ution, and scene class distribution. It can be seen that they
are independent and identically distributed, demonstrating
the videos from the OOPS dataset and OOPS-CE are in
the same knowledge domain. Actually, the videos in the
video pool (i.e., OOPS-CE) V filmed from the real world
ensure the same action content as original videos but are
difficult for keeping consistent with the original video
completely, since a large number of “fail” videos cannot
be reproduced. Therefore, we keep the scene classes
of each pair of videos as same as possible during the
process of building OOPS-CE, as shown in Fig. 6 (c).
Besides, to better distinguish action content categories
(such as motorcycling, somersaulting, and driving a car)
and action state categories (intentional, transitional, and
unintentional), we show the statistics of action state
categories for all video frames in the OOPS dataset
in Fig. 7.

2) Counterfactual Intervention: Although an off-line video
pool V has been built to represent the common sense that the
things are successfully performed. The videos from V cannot
be directly used as intentional actions since these untrimmed
videos contain much noisy information, which cannot generate
reliable counterfactual examples and cannot make the con-
structed video pairs comparable. Hence, we propose to align
the intentional action for pairwise videos from the video pool
and OOPS dataset. The alignment is beneficial to generate
a counterfactual example by selecting an appropriate part and
does not affected by the background content. Given an original
labeled training video consisting of the former intentional
action C = c and subsequent unintentional action U = µ,
the alignment process is formulated as:

vc = arg min
v∈V

D(v, c), (2)

where the video V from V with the same action content as
c denotes the counterfactual video, under a basic assumption
that the videos from V are intentional. D(v, c) calculates the
�2 distance between a video clip v from the video V and
the former intentional action c in the original video. The
alignment-based method calculates D(v, c) for all clips in
video V and outputs the video clip vc that makes D(v, c) reach
the minimum, i.e., D(vc, c), where vc denotes the searched
video clip in the counterfactual video V . This alignment
process is unsupervised, which does not use any extra anno-
tation. After aligning vc with c, we slice the counterfactual
video V into two parts including the aligned intentional
action cc and subsequent intentional development µc. The
cc is composed of vc and the segment before vc. Finally,
the counterfactual example is generated by concatenating the
former intentional action c in the original unintentional video
and subsequent intentional development µc in the counterfac-
tual video V , where the lengths of counterfactual example
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Fig. 4. Each pair of videos shows an example of factual unintentional action in the OOPS dataset and counterfactual intentional action in the video pool
(i.e., OOPS-CE). By crawling publicly available “success” videos from the web, we create a video pool containing intentional knowledge, corresponding to
“fail” videos one by one. We show several video pairs, such as “riding a unicycle,” “riding over obstacles,” “rope balance,” “surfing,” “pole dance,” “high
jump,” “workout in gym,” and “jumping over another.” Taking the top-left corner video pair as an example, the top line of this video pair shows a man riding
a unicycle falling off and the bottom line displays the man doing this thing successfully.

and original factual video are fixed into the same size via
downsampling or upsampling. Note that only the original
labeled training videos owning counterfactual examples are
applied for causal inference during the training.

3) ETT Calculation: The Effect of Treatment on the
Treated (ETT) denotes the real effect when the treatment is
applied [42]. In our approach, the occurrence of the uninten-
tional action is regarded as the treatment. Then we learn the
effect of treatment (unintentional action) by comparing the
original unintentional video and the counterfactual example.
As shown in Fig. 2, we calculate the ETT by subtracting the

counterfactual prediction from the original prediction. Specif-
ically, the original likelihood prediction can be formulated as:

YU=µ = P(Y |X (C, U)), (3)

where X (C, U) denotes that the input video X contains both
action content C and intention U clues. The counterfactual
prediction can be written as:

YU=µc = P(Y |X (C, do(U = µc))), (4)

where U = µc denotes the counterfactual situation, such as
“intentionally playing skateboard successfully”. As shown in
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Fig. 5. Some examples are filtered out when controlling the quality of video pool (i.e., OOPS-CE). In (a), the video pair is described by the same keyword
“uneven bars” but contains different action content, since the performers do different things. In (b), the video pair has the same keyword “sleeping at the
desk” while their action contents are different because the performers are a person and a cat, respectively.

Fig. 6. The statistics of the OOPS dataset and video pool (i.e., OOPS-CE). In (a), the video length distribution of the OOPS dataset is slightly different
from that of the video pool, which does not affect the causal inference during the training. (b) indicates the OOPS dataset and video pool contain the same
action content, where two action class distributions almost overlap. (c) denotes the video scene class distributions of the OOPS dataset and video pool are
slightly different since the “failure” in some scenes cannot be reproduced.

Fig. 7. The statistics of action state categories for all video frames in
the OOPS dataset. The x-axis indicates action state categories, where 0, 1,
and 2 indicate intentional action, transition to unintentional action, and
unintentional action. The y-axis denotes frame frequency for all videos
in OOPS.

Fig. 2 (b), the calculation of ETT is written as:
ET T = E[YU=µ − YU=µc |U = µ], (5)

where U = µ denotes the observed evidence that unintentional
action has really occurred. With the same action content, the
main difference between the original video and the counterfac-
tual example focuses on the intention. Thus, we mitigate the
negative effect brought by the training bias of action content
and highlight the causal effect of intention on the model
prediction by maximizing ET T of the intention.

D. Network Optimization

In this subsection, we introduce network architecture and
optimization method. As shown in Fig. 8, our framework is
composed of three modules including an encoder network to
extract visual features, a Basic LSTM predictor to localize
unintentional action, and a Siamese LSTM network to learn
the causation by making a comparison between factual and
counterfactual examples. The details are introduced as follows:

1) Encoder Network: Taking a video as the input, the
encoder network provides the spatial-temporal features for
each video frame. In practice, we can use any existing action
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Fig. 8. The network architecture of UAL-CE. Given an unintentional action video, we generate the counterfactual example by aligning the intentional
action for pairwise videos from the video pool and OOPS dataset and feed original factual video and counterfactual example into an encoder to extract
spatial-temporal features for frames. Then we apply a Basic LSTM for recognizing the intentionality of action and employ a Siamese LSTM to disentangle
the causal effects of both content and intention clues to learn the real causation of intention on model prediction. The weights of Basic LSTM and Siamese
LSTM are shared.

recognition network as the encoder, such as the ResNet3D-18
network [70].

2) Basic LSTM: In addition to learning the spatial-temporal
features of the video, we apply an LSTM as the predictor,
which can be used to predict the probability of each frame.
Specifically, we input a video into a many-to-many LSTM and
output a sequence for hidden features, and feed the sequence
features into a three-way classifier to recognize each frame
as one of three categories, i.e., intentional, transitional, and
unintentional.

3) Siamese LSTM: The input of Siamese LSTM is
spatial-temporal features of both factual and counterfactual
videos. In Siamese LSTM, we feed them into two LSTMs
and make a comparison between the predictions of factual
unintentional and counterfactual intentional actions to high-
light the real causal effect of action intention. The weights of
Basic LSTM and Siamese LSTM are shared to jointly optimize
them.

During training, we optimize Basic LSTM and Siamese
LSTM jointly by the following loss function:

L = ET T + λLC E

= ET T + λEX log P(Y |X), (6)

where LC E is the cross-entropy loss used to optimize Basic
LSTM while ET T is applied to optimize Siamese LSTM. λ
is a hyper-parameter to balance two losses. During inference,
we use Basic LSTM for prediction, since our approach only
focuses on the model training.

IV. EXPERIMENTS

In this section, we evaluated our approach on the OOPS
dataset for two tasks, including Unintentional Action Recogni-
tion and Unintentional Action Localization. The experimental
results and analysis are described in detail as follows.

A. Dataset

OOPS [18] is a recently-collected largest unintentional
action dataset, which consists of 20338 videos downloaded

from YouTube, adding up to over 50 hours of data. All
these videos contain unintentional failures caused by various
errors and environmental factors. The videos in the OOPS
dataset are annotated by three workers, where each video
annotation contains three time-stamps of transition to unin-
tentional action. The OOPS dataset is split into 4674 training
and 3593 testing videos since authors remove the videos
without unintentional actions according to the annotation file
(i.e., “transition_times.json”) to control quality. Specifically,
“transition_times.json” is compressed in “Natural language
descriptions.zip” and can be downloaded at the official web-
site. “transition_times.json” is a dictionary with keys as video
names and values as dictionaries, covering all videos from
the training and testing sets, where each value dictionary
contains the key “n_notfound” that denotes the number of
workers who labeled failure “not found”. [18] removes the
videos where most workers (i.e., “n_notfound≥2”) indicate
there is no failure according to the annotation file. The
constructed video pool contains 3004 counterfactual videos for
model training, corresponding to 3004 original labeled training
videos. We have intuitively displayed some examples of factual
and counterfactual video pairs in Fig. 4.

B. Experiment Settings

We followed the experimental setting in [18] to evaluate the
accuracy of unintentional action recognition and localization.
Specifically, we applied the same backbone network, Kinet-
ics pre-trained model, and supervision information for fair
comparisons. Note that, although we fed the counterfactual
examples for the training, no extra annotation (action state
label) is introduced.

1) Unintentional Action Recognition: This task aims to
recognize each video frame as one of three categories
(i.e., intentional, transitional, and unintentional), which can
be achieved by a three-way classification. To robustly cap-
ture spatial-temporal features of the video, we used the
ResNet3D-18 [70] as the backbone network, which is
pre-trained on the Kinetics action recognition dataset [71]. For
the “Linear” setting in Table I, we froze the backbone network
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TABLE I

COMPARISONS OF UAL-CE AND OTHER METHODS FOR THE
UNINTENTIONAL ACTION RECOGNITION TASK ON OOPS

TABLE II

COMPARISONS OF UAL-CE AND OTHER METHODS FOR THE

UNINTENTIONAL ACTION LOCALIZATION TASK ON OOPS

and fitted our predictor whose input is the pre-trained features.
For the “Fine-tuned” setting, we jointly trained the backbone
network and the predictor with the annotations.

2) Unintentional Action Localization: This task is to local-
ize the time-stamp when the action transits from intentional
to unintentional. Based on the results of action intention-
ality recognition, we followed PUAV [18] and selected the
time-stamp with the highest probability as the predicted loca-
tion. According to PUAV [18], we considered the predicted
location correct if the distance from any ground-truth is
lower than the pre-defined threshold. As shown in Table II,
we applied two thresholds provided in [18], including within
1.0 seconds and within 0.25 seconds.

C. Implementation Details

We extracted frames from each video at the same FPS
(Frames Per Second, e.g., 16) and fixed the lengths of videos
into the same size (e.g., 120). We applied the Kinetics pre-
trained ResNet3D-18 as the backbone network to extract
512-dimension features for each video frame. We applied
the same network architecture on both a Basic LSTM and a
Siamese LSTM that are composed of a 256-dimension hidden
layer followed by a 128-dimension fully-connected layer and
share the weights. We used the Adagrad optimizer to train the
model with an initial learning rate of 0.001, and set λ and batch
size as 0.6 and 8, respectively. The Basic LSTM was trained
by original labeled training videos of OOPS and the Siamese
LSTM was trained by both original labeled training videos
in OOPS and the corresponding counterfactual examples in
the video pool. We used the Basic LSTM for inference. Note
that the counterfactual examples are only used for training,

not for testing, which has no influence on the speed of
inference. We implemented UAL-CE based on the baseline
of PUAV [18], where the pre-trained model is available at the
official 3D-ResNets [72] implementation. We will release the
code of UAL-CE, including the training and inference phases,
to promote future research on unintentional action localization.

D. Results and Analysis

1) Comparison With the State-of-the-Art Methods: For
both unintentional action recognition and localization tasks,
we compared our approach with recent methods PUAV [18]
and LGF [32]. Specifically, PUAV [18] performs a three-way
classification on the video features and localizes uninten-
tional action using a sliding window. To learn the video fea-
tures, PUAV provides some self-supervised learning methods
(i.e., VideoSort, VideoContext, and VideoSpeed) and a Kinet-
ics pre-trained model (same with our approach). LGF [32]
learns the goal-oriented video representations by using the
extra annotations of action goals and uses the same Kinetics
pre-trained model.

a) Unintentional action recognition: Table I reports the
comparisons with other methods for the unintentional action
recognition task on the OOPS dataset. Compared to the
best performance of PUAV-Kinetics and LGF methods, our
approach respectively achieved 18.6% and 4.7% improvements
in the setting of “Fine-tuned”, which demonstrates that our
approach effectively alleviates the negative effect brought by
the training bias of action content.

b) Unintentional action localization: Table II shows the
comparisons with other methods for the unintentional action
localization task on the OOPS dataset. It is obvious that
our approach significantly outperformed PUAV and LGF
methods. For example, compared with the state-of-the-art
method PUAV-Kinetics (Fine-tuned), our approach achieved
5.3% and 8.7% improvements within 1.0 seconds and within
0.25 seconds, respectively. Compared with the LGF method,
our approach can obtain similar performance improvements.
It indicates the advantage of our approach in learning the real
causation of intention on model prediction.

2) Ablation Study: To validate the effectiveness of individ-
ual components in our approach, we conducted comprehensive
ablation studies with different configurations of UAL-CE for
both unintentional action recognition and localization tasks on
the OOPS dataset. As shown in Table III, different configura-
tions of UAL-CE are defined as follows:
• “Baseline” indicates the baseline method that utilizes fac-

tual videos in the OOPS dataset to train Basic LSTM. The
loss function is LC E to optimize a three-way classifier
supervised by yt |Tt=1 ∈ {0, 1, 2}.

• “w/o alignment” indicates the method that randomly
selects a part of the counterfactual video as the sub-
sequent intentional development to generate a counter-
factual example, which does not align the intentional
action for pairwise videos from the video pool and OOPS
dataset.

• “w/o counter+Siamese” indicates the method that feeds
factual and counterfactual videos into two LSTMs with-
out shared weights and doesn’t apply the counterfactual
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TABLE III

ABLATION STUDIES ON THE OOPS DATASET FOR THE TASKS OF
UNINTENTIONAL ACTION RECOGNITION AND LOCALIZATION

intervention, where each LSTM is followed by a fully-
connected (FC) layer that trains a three-way classifier via
minimizing the loss LC E .

• “w/o counterfactual” denotes the method that trains
Siamese LSTM using both factual and counterfactual
videos but does not conduct the counterfactual interven-
tion. Note that “w/o counterfactual” indicates that we only
use counterfactual videos as the input to train one branch
of Siamese LSTM, but do not conduct the counterfactual
intervention to generate counterfactual examples.

• “w/o Siamese LSTM” indicates the method that conducts
the counterfactual intervention and calculates ETT to
optimize the model, but two LSTMs are without shared
weights during the calculation of ETT.

• “UAL-CE” is the method that conducts the counterfac-
tual intervention to generate counterfactual examples and
calculates ETT loss via Siamese LSTM.

As shown in Table III, we draw the following conclusions
by comparing the experimental results:

• Compared with Baseline, UAL-CE significantly improved
the performance on unintentional action recognition and
localization tasks, which demonstrates the effectiveness
of UAL-CE introducing the counterfactual inference to
mitigate the negative effect caused by the training bias.

• The performance of “UAL-CE” and “w/o Siamese
LSTM” is better than that of “w/o counterfactual” and
“w/o counter+Siamese”, which demonstrates that con-
ducting the counterfactual intervention can significantly
improve the performance.

• The performance of “UAL-CE” is better than that of
“w/o Siamese LSTM”, which demonstrates that Siamese
LSTM is more effective than two LSTMs without shared
weights. The same conclusion also is drawn by comparing
“w/o counterfactual” and “w/o counter+Siamese”.

• The performance of other variants of UAL-CE is signifi-
cantly better than that of “w/o alignment”, which demon-
strates that aligning the intentional action for pairwise
videos from the video pool and OOPS dataset can make
the generated counterfactual examples more reliable and
the constructed video pairs comparable.

• The improvements obtained by the counterfactual
intervention are more significant than the improve-
ments obtained by Siamese LSTM, which demon-
strates the main contribution of UAL-CE is to conduct
the counterfactual inference for the task of unintentional
action localization.

TABLE IV

ANALYSIS ON THE NUMBER OF COUNTERFACTUAL EXAMPLES ON BOTH
UNINTENTIONAL ACTION RECOGNITION AND LOCALIZATION

TASKS (N : THE NUMBER OF COUNTERFACTUAL EXAMPLES)

TABLE V

STUDY OF THE HYPER-PARAMETER λ FOR UNINTENTIONAL

ACTION RECOGNITION AND LOCALIZATION TASKS
(REG: RECOGNITION, LOC: LOCALIZATION)

3) Analysis on the Number of Counterfactual Examples: To
investigate the effect of the number of counterfactual examples
on the performance, we conducted a parameter analysis for our
approach on both unintentional action recognition and local-
ization tasks on the OOPS dataset. Table IV summarizes the
performance with different parameter settings including 0, 500,
1000, 2000, and 3004 counterfactual examples. We observe
significant performance improvements with increasing the
number of counterfactual examples (N). For example, when
N increases from 1000 to 2000, the performance on the task
of unintentional action recognition achieved 3.4% and 3.3%
improvements respectively in linear and fine-tuned settings.
When N increases from 2000 to 3004, the recognition per-
formance continued to grow 2.0% and 3.1% improvements
respectively. We can see that increasing N can consistently
improve the performance of our approach while the magnitude
of the performance improvement decreases slightly with the
increase of N . The above analysis demonstrates the effective-
ness of counterfactual examples generated by an alignment-
based method.

4) Study of the Hyper-Parameter λ: In our approach, there
is a hyper-parameter λ, which makes a trade-off for LC E and
ET T in equation (6). We explored different λ for the tasks of
unintentional action recognition and localization and presented
the results in Table V. For the unintentional action recognition
task, we observe that the peaks reach 75.1 and 82.6 at λ = 0.6
for the settings of “Linear” and “Fine-tuned”, and tend to
be flat with a slight decrease when λ > 0.6. This suggests
that the Basic LSTM for the frame-wise predictions is a basic
component that is important to recognize different action states
(intentionality). On the contrary, the results of λ = 0.0 indicate
training a dense three-way classifier contributes crucially to the
model learning.
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Fig. 9. The visualization comparisons of UAL-CE and PUAV on the OOPS dataset. Here, PUAV is the abbreviation of the most competitive method
PUAV-Kinetics (fine-tuned). The qualitative results of several videos are shown from top to down, such as “jumping off the scooter,” “playing the skateboard,”
“riding a motorcycle over the river,” “brandishing the sword,” “hitting the child,” and “playing football.” The green indicates the correct localization results
of our approach. The blue denotes the ground truth provided by the OOPS dataset. The red is incorrect localization results of the PUAV method.

5) Visualization: To intuitively show the effectiveness of our
approach, we visualized the comparisons between UAL-CE
and PUAV-Kinetics. As shown in Fig. 9, for the videos like
“Jumping off the scooter”, “Playing the skateboard”, “Riding a
motorcycle over the river”, “Brandishing the sword”, “Hitting
the child”, and “Playing football”, our approach correctly
localized the unintentional action while the PUAV-Kinetics
method fails. It demonstrates that UAL-CE can reduce the
training bias and improve the accuracy of localization.

We also showed two failed examples of our approach in
Fig. 10. The first example “Throwing the baby into bed”
contains multiple intentionality variations, i.e., “baby being
thrown into the bed” and “baby being ejected from the bed”,
which might lead to incorrect localization since only one

intentionality variation may be recognized. For the second
example “Child running under the quilt”, our approach mis-
understood the intentional action “running under the quilt” as
an unintentional one and missed the real unintentional action
“falling down”. It is possible because the intentional action
“running under the quilt” is hardly observed by the model.

Furthermore, we showed the attention of factual and coun-
terfactual actions in Fig. 11, which demonstrates UAL-CE
can spot the right attention and makes comparisons between
them to learn the causation. Specifically, during the process of
extracting spatial-temporal features of factual and counterfac-
tual actions, we preserved the feature maps (with size 7 × 7)
from the last convolution layer in 3DCNNs. The feature maps
of factual and counterfactual actions are respectively denoted
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Fig. 10. Some failed examples of our approach, i.e., “throwing the baby into bed” and “child running under the quilt.”

Fig. 11. The attention of factual unintentional and counterfactual intentional
actions. Along the t-axis, {yk }3k=1 indicate temporal annotations.

as Fμ and Fμc , both of them with the size T × 7 × 7.
Then, we utilized the cross-attention model [73] to show the
attention between Fμ and Fμc to focus on their semantic
consistent regions. As shown in Fig. 11, the attention to
factual and counterfactual actions focuses on the action itself.
The highlighted factual action regions are semantic consistent
with highlighted counterfactual action regions, which makes
the comparisons between factual and counterfactual actions
more reliable. Besides, when the action switches from one
intentionality category to another, the corresponding attention
is sensitive, which is beneficial to recognize intentionality
variation (i.e., the transition from intentional to unintentional).

6) Discussion: We provided a discussion on the impact of
UAL-CE on the general intentional action localization task via
conducting experiments on the THUMOS14 dataset. Follow-
ing previous efforts [11], [30], [31], [74], [75], we adopted
200 untrimmed validation videos from the validation set as
the training data and utilized 213 untrimmed testing videos
from the test set to evaluate the performance since only these
untrimmed videos have temporal annotations. To compare
with previous works [11], [30], [31], [74], [75], we followed
their evaluation metrics and reported mean Average Preci-
sion (mAP) under thresholds tIoU = {0.5, 0.7}. The results of
UAL-CE, baseline method, and other methods are summarized
in Table VI. “Baseline” indicates the baseline method that
trains Basic LSTM to learn a classifier via minimizing the
binary cross-entropy loss. In UAL-CE, we first constructed
counterfactual data using the OOPS dataset, and such data is
obtained by matching language descriptions of unintentional

TABLE VI

PERFORMANCE COMPARISON OF UAL-CE ON THE THUMOS14 DATASET

actions (i.e., the annotation “goal” provided in the OOPS
dataset) and intentional action categories provided in the THU-
MOS14 dataset. Based on intentional and unintentional action
videos, UAL-CE jointly trains Siamese LSTM and Basic
LSTM jointly by minimizing the loss ET T+λLC E . Similar to
“Baseline”, UAL-CE utilizes Basic LSTM for inference, where
counterfactual data is only used for training. It can be seen that
UAL-CE outperforms the baseline method and other methods
under the metric mAP tIoU@0.7 and has a slight degradation
compared to TAL-Net under the metric mAP tIoU@0.5. TAL-
Net fuses RGB and optical flow-based features to complement
each other, while UAL-CE introduces extra counterfactual data
and constructs Siamese LSTM for highlighting causal effects
during model learning. Therefore, TAL-Net under the metric
mAP tIoU@0.5 achieves better localization performance due
to introducing optical flow, while under a more strict metric
(mAP tIoU@0.5) UAL-CE explores real causal effects via
introducing counterfactual data during the model training and
achieves better localization performance.

V. CONCLUSION

In this paper, we have proposed a causal inference approach
to mitigate the negative effect brought by the training bias
of action content through disentangling the causal effects
between model prediction, action content, and intention clues.
In our approach, we have built a video pool with intentional
knowledge and conducted the counterfactual intervention to
generate counterfactual examples. Then we have trained the
model by maximizing the difference between the factual and
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counterfactual predictions to remove spurious correlations of
the action content clues and highlight the intention clues.
Experimental results show that our approach outperforms
existing state-of-the-art methods significantly on the OOPS
dataset for the tasks of unintentional action recognition and
localization.
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