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ABSTRACT

Humans can easily understand whether a person’s action is
intentional or not. However, it is very challenging to teach a
machine to recognize this due to the lack of referable com-
parisons and reliable annotations. Given a video with unin-
tentional action, the annotations are usually unreliable due
to the intrinsic ambiguity from multiple annotators and the
subjective appraisals. To address this problem, we propose a
new framework which online aggregates multiple probabilis-
tic labels for unintentional action localization. Specifically,
we first model the uncertainty of annotations with a tempo-
ral probability distribution, and then develop a label atten-
tion model to aggregate the reliable annotations in an online
manner. We evaluate our method on the public OOPS dataset
where each video contains multiple annotations of uninten-
tional action and our experimental results show that mining
reliable supervision information from multiple unreliable an-
notations achieves significant improvements over the baseline
methods.

Index Terms— Action localization, Unintentional action,
Probabilistic label aggregation

1. INTRODUCTION

“Intention is one of the most powerful forces there is. What
you mean when you do a thing will always determine the out-
come.”

—Brenna Yovanoff, The Replacement

Existing human action analysis and recognition system-
s tell us what the contents of physical motions are (action
recognition [1]) or when the actions begin and end (action
detection [2] and action localization [3]), which cannot ex-
plain why the action fails. Hence, it is desirable to require the
model understand the intention behind the observed actions,
such as raising a glass of wine to one’s lips is intentional to
drink while spilling the wine all over one’s shirt is uninten-
tional action.

The research shows that 18-months-old children are ca-
pable of understanding intentional acts [4]. However, it is
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Fig. 1: The comparisons between conventional methods and
our proposed method. The top row shows that convention-
al methods directly use the hard labels to segment the video
with three parts including intentional action, transitions from
intentional to unintentional action, and unintentional action.
This supervision manner ignores the uncertainty of annota-
tions and is easy to be misled by the noisy annotations. The
bottom row shows that our proposed method models the label
uncertainty with a probability distribution and mines the reli-
able annotations from multiple candidates by using the label
attention model. Through relaxing the hard label and explor-
ing the reliable annotation, our method shows a more power-
ful generalization ability.

still an enormous challenge to teach the model to understand
the intention of observed actions, which requires referable
comparisons and reliable annotations. To train the model for
recognizing intention, Epstein et al. [5] collect an annotat-
ed video dataset with unintentional action, which annotates
videos with the temporal location at which the video transi-
tions from intentional to unintentional action. One can train
the model to localize the unintentional action by classifying
the given video clips (or frames) are intentional or not. De-
spite there are abundant annotations in the datasets, the an-
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notations are always unreliable due to the intrinsic ambigu-
ity from multiple annotators and their subjective appraisal-
s. We show this intrinsic ambiguity in Fig 3, e.g. for the
same video, “a man falls off when he jumps onto the bed”,
different annotators have different arguments such as the be-
ginning of the jumping or the moment of the man touching
the bed. As shown in Fig. 1, exiting methods train the model
with 3-way classification (intentional, transitional, and unin-
tentional), which regards the action as the transitional one if
the video clip overlaps with any annotated point. It is a hard
classification for intentional/unintentional actions, which ap-
plies the upper and lower bounds of annotations as the final
supervision. The model is easy be misled by the noise of an-
notations due to over-fitting with this hard supervision.

In this paper, we formulate the unintentional action lo-
calization as a temporal probabilistic regression problem, and
propose to online aggregate multiple annotations using an at-
tention model. As shown in Fig. 1, we directly regress the
timestamp to localize the unintentional action. To model the
uncertainty of annotations, we apply a probability distribu-
tion, i.e. a Gaussian distribution or a Laplace distribution,
to replace the fixed temporal location. In this temporal la-
bel distribution, unintentional actions more likely occur in
the locations closer to the annotated timestamps. In addition,
we propose a label attention model to aggregate the label-
s from different annotators. This label attention model esti-
mates the reliabilities of different labels and reweights them
before probabilistic superposition. Finally, we normalize the
aggregated distribution as the supervision to train the model.
The generated label distribution considers the uncertainty of
annotations, constructs the graduality from the intentional ac-
tion to unintentional action, and mines the reliable clues from
the multiple unreliable annotations. We evaluate our method
on the OOPS [5] dataset and obtain significant improvement.

2. RELATED WORK

In this section, we briefly review two related topics: uninten-
tional action localization and label distribution learning.

2.1. Unintentional Action Localization

Different from conventional action localization [6, 7, 8, 9]
which focuses on the beginning and ending of the action con-
tents of the video, unintentional action localization aims at
understanding the intention behind the action and localizing
when the action becomes unintentional. To understand the in-
tention, Epstein ef al. [5] collect an annotated video dataset
and train a three-way classifier to recognize the action as in-
tentional, unintentional, or transitional. It localizes the unin-
tentional action by applying the classifier in a sliding window
fashion over the temporal axis and exploring the location with
the most confident score. Furthermore, the goals of original
intentional action are labeled to improve the quality of the

supervision and train the more discriminative video represen-
tations [10]. However, these models are easy to be misled
by unreliable annotations due to the hard supervision man-
ner. Thus, we propose to aggregate label distributions from
multiple annotations online.

2.2. Label Distribution Learning

Label distribution learning [11, 12, 13] aims to solve the un-
certainty of annotations by replacing a hard label with a prob-
ability distribution, which has obtained great success for fa-
cial age estimation. For example, Geng et al. [11] first pro-
pose to apply an age distribution as the supervision instead
of a fixed age label, and extend it into deep learning frame-
work [12]. Recently, label distribution learning has widely
used in different computer vision tasks such as facial land-
mark detection [14], pose estimation [15] and crowd count-
ing [16], and demonstrates the effectiveness by mitigating the
overfitting of unreliable annotations. In this work, we apply
the label distribution for the temporal location of the video,
and further, propose an attention model to online aggregate
multiple label distributions from different annotators.

3. APPROACH

This section presents a temporal probabilistic regression
framework to study unintentional action localization, where
the core idea consists of probabilistically modeling unreliable
temporal annotations and online aggregating multiple labels
via attention model.

3.1. Problem Formulation

The unintentional action localization task aims to detect the
temporal boundary between intentional and unintentional ac-
tion. Given a video including T frames X = {z|t =
1,2, ..., T}, we formulate the unintentional action localization
task as the temporal regression in which the model predicts
the temporal location when unintentional action occurs. To
obtain this location, we predict the probabilities of uninten-
tional action occurring for each frame in the video and select
the most likely time as the predicted temporal location:

i = max g (x1), (1)

where gy denotes the prediction model whose input is the rep-
resentations of frames (or video clips) and output is the pre-
dicted probability of unintentional action occurring. Howev-
er, the annotations of unintentional action are always unreli-
able due to the intrinsic ambiguity from multiple annotators
and their subjective appraisals, i.e. we have different labeled
failure moments Y = {yx|k = 1,2,..., K} from differen-
t annotators for the same video in the OOPS dataset. Thus,
a challenging problem for training the model is how to gen-
erate reliable supervision from these unreliable annotations.
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Fig. 2: The overall framework of the proposed method. Given a video with multiple annotations, the model first extract features
with a video encoder and apply an LSTM predictor to localize the unintentional action. To model the uncertainty of annotations,
we use a label distribution to replace the hard label, which can be regarded as the derivative of the sigmoid approximation of
the original signum function. During training, we apply a label attention model to online aggregate multiple annotations by the
comparisons between model prediction and annotations and encourage the annotations close to the prediction.

In this work, we propose to soften the hard label informa-
tion along the temporal axis and further take the derivative of
the soft label information to model each failure moment as
a probabilistic temporal label distribution. Based on various
generative label distributions, we propose to aggregate them
in an online manner, which enables our model to focus on
more reliable annotations via the attention model.

3.2. Online Probabilistic Temporal Label Aggregation

Given any labeled failure timestamp y; € Y, we first soften
this hard label into a Gaussian distribution as :

pi(t) ~ YN (1 = yi, 0?) 2

where ¢ denotes different temporal locations, the original la-
beled timestamp ¥y, is the mean of the distribution, variation
o denotes the degree of deviation, v = v/27o is a normaliza-
tion term which adjusts the py (yr) = 1. We use p(t) to rep-
resent the probability that the unintentional action occurs on
this temporal location ¢. As shown in Fig. 2, this label distri-
bution is equivalent to a two-stage refinement which first ap-
proximates the hard signum function with a sigmoid function
and then calculates its derivative as the label distribution, s-
ince the original symbolic function is non-differentiable. The
pi(t) is larger when the temporal location is close to the la-
beled timestamp y,. Besides, we only consider the py(t) in
the domain of definition [0, 7']. Note that, we can replace the
Gaussian distribution with any unimodal and symmetric dis-
tribution, e.g. Laplace distribution.

Despite we model the uncertainty with the probability dis-
tribution, how to mine the reliable supervision from multiple
annotations is still a challenge. To explore which annotation
is more reliable, we propose an attention model to online ag-
gregate multiple annotations. Given a video X and its corre-
sponding annotations Y, the model first predicts the location

1 of unintentional action as (1), and then learns the distance
between the prediction and annotations as:

ap = @(|7 — ykl), 3)

where @ is a negative correlation function to explore reliable
annotations and reweight them. With this simple yet effective
label attention model, we pay more attention to the annota-
tions which are close to the model prediction. We online ag-
gregate annotations by this attention model which mines the
reliable annotations with the model to learn. Suppose we have
an initial weight (3, for each annotation, we will aggregate the
probabilistic temporal labels as the final training label:
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which is modified by the model prediction. Finally, we al-

so normalize the p, € [0, 1].

During the training process, we apply the softmax func-
tion to calculate the predicted probability and optimize the
model with a cross-entropy loss between predicted probabil-
ity by the network and generated ground-truth probability by
the attention model:

where can be regarded as the posterior weight

Lon(pyllae) Zpy )log qo (1) (5)

3.3. Network

In this subsection, we introduce the network architecture of
our method, which consists of three parts: video encoder, L-
STM predictor, and label attention model. As shown in Fig. 2,
for a given video, we first extract features of the frames (or
video clips) with an encoder, i.e. an R3D network. Then we
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Fig. 3: Examples of the OOPS dataset. We show some ex-
ample videos of unintentional actions in the OOPS dataset
including falling down while skiing, falling down while rid-
ing a motorcycle, washed away when crossing the river, and
falling off when jumping onto the bed. We also show the an-
notated temporal locations of the transition from intentional
to unintentional action, which is intrinsic ambiguous due to
the subjective appraisals of different annotators.

learn an LSTM predictor whose input is the video represen-
tations to predict the frame-level probability of unintentional
action occurring in the corresponding timestamp. Besides, the
label attention model consists of two inputs including multi-
ple probabilistic annotations and model predictions. The la-
bel attention model is trained to mine the reliable annotations
and aggregate multiple annotations with learned reliability s-
cores. This aggregation process is online updated with differ-
ent model predictions as inputs.

4. EXPERIMENTS

In this section, we evaluated our proposed method on the
OOPS dataset to demonstrate the effectiveness of our pro-
posed method for localizing unintentional action. We also
conducted some quantitative comparisons with other method-
s and analyzed the compared results qualitatively.

4.1. Dataset

The OOPS dataset contains unintentional actions caused by
various errors and factors, which is a big amount of collection
of videos consisting of over 20000 videos from the YouTube
website. In this dataset, there are 4673 labeled training videos
and 3593 testing videos, where each labeled video is annotat-
ed with the time-stamp at which the video frame begins to
happen the unintentional action. Furthermore, according to

Table 1: Comparisons of unintentional action localization of
baseline and our method on the OOPS dataset.

Localization Accuracy

Method within 1 sec  within 0.25 sec
PUAV-Chance [5] 25.9 6.8
PUAV-VideoSort [5] 43.3 18.3
PUAV-VideoContext [5] 52.0 25.3
PUAV-VideoSpeed [5] 65.3 36.6
PUAV-Pretrain [5] 69.2 37.8
GEWF [10] 72.4 39.9
Ours-Hard 69.8 38.0
Ours-Probabilistic 71.6 38.4
Ours-Online 73.2 40.2

the statistical information of the OOPS dataset, fifty percent
of videos are mainly between the five-second and ten-second,
and forty percent of videos start the key unintentional actions
in the middle length of the video. The mean video clip length
is 9.4 seconds. We show some examples of the OOPS dataset
in Fig. 3, such as a man falls off when he jumps onto the
bed. We can observe that annotations of when the intentional
action transitions to the unintentional action are intrinsic am-
biguous. For example, one annotator argues the unintentional
action occurs at the beginning of the jumping, while other an-
notators argue it occurs when the man touches the bed.

4.2. Experiment Settings

During the training phase, we clipped each video to 90 video
frames, utilized the 3DResNet-18 [17] pretrained on Kinetics
[18] to extract 512-dimension visual features for each video
frame at the last convolutional layer. After that, we applied a
2-layer basic LSTM as the backbone and used Adagrad opti-
mizer to train the model with an initial learning rate of 0.001,
where the dimensions of input, hidden state, and output are
512, 128, and 2, respectively. Note that, we did not finetune
the backbone network for a fair comparison.

During the test phase, we directly extracted 512-
dimension visual features for each untrimmed video and fed
them into our learned model to predict all the video frame
labels which are utilized to localize the timestamp of hap-
pening unintentional action. Based on the predicted tempo-
ral label distribution of the video frames, we followed the e-
valuation setting of localization in [5]. Specifically, we used
our model in a sliding window fashion over the temporal ax-
is and evaluated whether the model can detect the timestamp
of the unintentional action beginning. The predicted bound-
ary is the one with the most confident score of unintentional
action across all the sliding windows. We considered the pre-
diction correct if the predicted boundary sufficiently overlaps
any of the ground truth positions in the dataset, where two dif-
ferent thresholds of sufficient overlap are utilized, i.e., within
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Fig. 4: The result comparisons between our method and PUAV [5].

one-second and within the one-quarter-second. Note that we
did not follow the classification settings in [5], since we on-
ly regressed the probability of unintentional action occurring
instead of the three-way classification. Our implementation
was based on PyTorch and our hardware configuration com-
prised a 3.70GHz CPU and 31GB RAM. We used an NVIDIA
2080Ti GPU for neural network acceleration.

4.3. Quantitative Analysis

We compared our method with the methods used in [5], in-
cluding VideoSpeed, VideoContext, VideoSort, and the pre-
dicted model on Kinetics, and the method GEWF [10] which
uses the extra annotations of action goals. These compared
methods utilized the model pre-trained on the full, annotated
Kinetics [18] dataset as feature extractors.

Table 1 shows the results of the task of unintentional even-
t localization. It is observed that our approach outperforms
other compared methods. For example, making a comparison
between Ours-Online and the PUAV-Pretrain methods with
the same pretrained features, we can obtain 4.2 percent and
2.4 percent improvements on both settings of within one sec-
ond and within a one-quarter second, which indicates that our
label attention model is more appropriate to localize the unin-
tentional actions by using fine-grained frame-level prediction.
Besides, Ours-Online also outperforms the GEWF method on
both settings of within one second and within a one-quarter
second, even though we did not use the extra annotations of
the goal to improve the quality of supervision. It demonstrates
that constructing the temporal probabilistic regression frame-
work and label attention model has the ability to capture more
informative perceptual clues to localize unintentional actions.

In addition, we investigated the critical factors beneficial
to localizing unintentional actions by ablation studies. We
evaluated different versions of our method in both settings,

i.e., Ours-Hard, Ours-Probabilistic, and Ours-Online meth-
ods, respectively, within one second and within a one-quarter
second, which analyzes the effects of different label models.
Specifically, the Ours-Hard method degraded the probabilis-
tic temporal label to the simple scalar labels without consider-
ing the label attention model. The Ours-Probabilistic method
used a probabilistic temporal label to supervise the learning
model without using the attention model to aggregate online.
Compared with the PUAV-Pretrain method, the Ours-Hard
model used the same pretrained features replacing the linear
classification with an LSTM predictor. Comparing the per-
formance of the PUAV-Pretrain method and the Ours-Hard
model show that the improvement of modifying the model
architecture is trivial. While making comparisons between
the Ours-Hard model and the Ours-Probabilistic method show
that modeling the uncertainty of annotations as the temporal
label distribution is effective. Furthermore, we evaluated the
performance of the proposed attention-based online aggrega-
tion method by comparing the Ours-Probabilistic method and
the Ours-Online method. The further improvement demon-
strates that our method has the ability to mine reliable super-
vision information from multiple annotations.

4.4. Qualitative Analysis

To investigate the effectiveness of our proposed method, we
also conducted the qualitative analysis by visualizing the lo-
calization results of PUAV [5] and our method. We showed
the comparisons and fail examples respectively in Fig. 4 and
Fig. 5. Taking the first video “falling down while skiing” as an
example for comparison, our method correctly localized the
unintentional action while PUAV failed on the “fallen man”.
It indicated that the model trained by the hard labels always
overfit to the fallen results instead of the unintentional caus-
es like “sloping skis”. Besides, we also showed some failed
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Fig. 5: The fail examples of our method.

examples of our method. For example, the model still tends
to capture the large visual changes of video (e.g., “the man
falls off a cow” in the first video), but not the real beginning
of unintentional action (“the cow is crazy”), despite mining
reliable supervision. It encourages us to further explore the
causalities of unintentional action.

5. CONCLUSION

In this paper, we have proposed a probabilistic temporal-
label aggregation method for unintentional action localiza-
tion, which replaces the hard category labels with a tempo-
ral probability distribution and online aggregates multiple an-
notations through an attention model. We formulate the un-
certainty of annotations as a prior distribution and learn the
label attention model to estimate the reliabilities of multiple
labels and accordingly reweight them. We have demonstrat-
ed significant improvements over baseline methods with the
proposed method.
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